/[cvs]/bcast-fraction-threshold/log
ViewVC logotype

Contents of /bcast-fraction-threshold/log

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.1 - (show annotations)
Sat Jul 26 17:07:51 2008 UTC (10 years, 2 months ago) by riso
Branch: MAIN
CVS Tags: HEAD
Prekopane specific comments od 2.reviewera

1 Review #2, specific comments:
2
3 1) v uvode hovorime o vseobecnom T, ale tak to bolo aj v [12], nie? Mne sa
4 zda, ze ten odstavec v uvode je ok... alebo ho prekopeme?
5
6 2) Reply:
7 The statement of Lemma 1 holds for any n>=1. This has been added to the
8 claim of the Lemma.
9
10 3) Explained.
11
12 4) Reply:
13 The derivation of the limit is straightforward, using well-known standard
14 calculus techniques:
15 $$\lim_{n\to\infty}1/2(n-\sqrt{n^2-4X(n-2)}) =
16 \lim_{n\to\infty}1/2(n-\sqrt{n^2-4X(n-2)})
17 \frac{n+\sqrt{n^2-4X(n-2)}}{n+\sqrt{n^2-4X(n-2)}} =
18 \lim_{n\to\infty}1/2\frac{n^2-n^2+4X(n-2)}{n+\sqrt{n^2-4X(n-2)}} =
19 \lim_{n\to\infty}1/2\frac{4X(1-2/n)}{1+\sqrt{1-4X(1/n-2/n^2)}} = X$$
20
21 5) - je sice pravda, ze $r$ je pocet dorucenych sprav, ale v prvom kroku,
22 takze je to rovne poctu novoinformovanych vrcholov. preznacil som to na l,
23 aj ked to nie je uplne to iste l ako v Lemme 1, je to takmer to iste...
24 myslis, ze je to ok?
25 - epsilon som prekopal v hyperkockach, v dokaze je zavedena delta, ako
26 sme sa dohodli
27
28 6) - opravene
29 7) - opravene
30
31 8) - prekopane
32 9) - ignorovat?
33 10) - opravene
34 11) - opravene

CVS Admin">CVS Admin
ViewVC Help
Powered by ViewVC 1.1.26