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1 Department of Computer Science, ETH Zurich, Switzerland
{juraj.hromkovic, richard.kralovic}@inf.ethz.ch

2 Department of Computer Science, Comenius University, Bratislava, Slovakia
kralovic@dcs.fmph.uniba.sk

Abstract. What is information? Frequently spoken about in many con-
texts, yet nobody has ever been able to define it with mathematical rigor.
The best we are left with so far is the concept of entropy by Shannon, and
the concept of information content of binary strings by Chaitin and Kol-
mogorov. While these are doubtlessly great research instruments, they
are hardly helpful in measuring the amount of information contained in
particular objects. In a pursuit to overcome these limitations, we propose
the notion of information content of algorithmic problems. We discuss
our approaches and their possible usefulness in understanding the ba-
sic concepts of informatics, namely the concept of algorithms and the
concept of computational complexity.

1 Introduction

Looking at the terms “informatics” or “information processing” as reasonable
alternatives to “computer science” for naming our scientific discipline, we identify
two basic notions describing the fundamental stones of informatics. The first
one is the notion of “algorithm”, which is related to “automatic processing”,
and the second one is “information”. The relationships of computer scientists
to these two notions are different. The notion of an algorithm as a method
for solving a problem was fixed in formal mathematical definitions [11], and
it seems that we understand the concept of algorithms very well. The formal
concept of algorithms belongs to informatics; the development of this concept is
a fundamental contribution of informatics to science.

The formal definition of an algorithm can be viewed as an axiom of the for-
mal language of mathematics; we even relate the birth of computer science to
the development of this fundamental concept. The situation with the notion of
“information” is completely different. This notion is not a property of informat-
ics or a contribution of informatics to other scientific disciplines, as it is used in
physics, biology, technical sciences, and many other disciplines. The crucial point
is that we work intuitively with this term and yet we do not really know what
“information” is. We are even very far from giving a precise mathematical defini-
tion of “information”. We have the concept of entropy due to Shannon [10] and
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the concept of Kolmogorov complexity due to Kolmogorov [9] and Chaitin [4].
Both concepts are great research instruments, but at the very end they cannot be
used to estimate the information content of particular objects (binary strings).

On the other hand, computer scientists frequently speak about automatic
information processing. What does it mean to solve an instance of a computing
problem? To compute a solution of a problem instance is nothing else than
extracting a desired information about the problem instance that is somehow
hidden in the problem instance description. Remember, we cannot speak about
the computational complexity of a problem without fixing the representation of
the problem instances. The aim of information processing in the usual sense is
to express some part of information contained in the input in a prescribed way
– from this point of view, computing is a transformation of one representation
of information to another one. Complexity theory indicates that the cost of
these transformations may be arbitrarily high, depending on the problem. The
concept of NP-completeness shows that many problems can be “equally” hard
from the computational point of view, because one can efficiently transform the
representation of the instances of one problem into the representation of the
instances of another problem.

All this suggests that in order to advance in understanding the nature of
computing, we should intensify our efforts to figure out what information really
is. What about introducing a concept of “information content of algorithmic
problems” in order to classify the problems in this way, and then trying to
learn something essential about the computational hardness of the corresponding
problems?

Another reason to focus more on studying the meaning of information is
the 40-years old unsuccessful effort to prove nontrivial lower bounds on the
computational complexity of concrete algorithmic problems. On the one hand,
we believe that NP-hard problems require exponential time to be solved, and on
the other hand we are unable to prove a superlinear lower bound on the time
complexity of at least one of them. Our lower bound methods are often strongly
related to “information transfer” between different parts of hardware (memory)
or between different parts of computations. It seems that arguments of this kind
are not strong enough to reach our goals. Understanding more about the concept
of information and its role in computation could be the way out.

In this paper, we introduce the notion of “information content of algorithmic
problems” with the hope that the study of this information measure could be
helpful in understanding the fundamentals of computing (information process-
ing).

2 Information Content of Online Problems

Our first attempt starts with defining the information content of a problem as
a measure that does not depend on the computational hardness of the problem.
Because of that, we do not start with thinking about classical offline problems.
In an online setting, the algorithm receives instances of the problem piece by



piece. After getting a part of the input, the algorithm is required to make a
corresponding decision with respect to the problem instance solution and is not
allowed to revise decisions later after seeing a new part of the input. This means
that the algorithm must generate a part of the solution with zero information
about the missing parts of the problem instance. Thinking in terms of optimiza-
tion problems, one defines the competitive ratio crA(I) of an online algorithm A

on a problem instance I as the ratio between the cost of the solution computed
by A and the cost of the optimal solution that can be computed based on the
complete information about the instance. An algorithm A, whose competitive
ratio crA(I) is at most r for any problem instance I, is called r-competitive.

Our first idea is to define the information content infP of an online problem
P as the minimum number of advice bits sufficient and necessary to guarantee
that it is possible to compute an optimal solution to any problem instance (to
get the competitive ratio 1). The advice bits are nothing else but “information”
about the not yet known part of the input. For sure, the Kolmogorov complexity
of the instance is an upper bound on the number infP (I) of advice bits needed to
solve the instance optimally in an online manner, however, this is only an upper
bound on the information content of this problem instance. Often one does not
need the full information about the instance to distinguish it from other ones.
Moreover, one does not necessarily need to distinguish each instance from all
other ones; it is enough to take the right decision, which can be common for
many problem instances. And this is exactly what we are searching for, because
this is what we intuitively relate to the desired notion of “information content
of a problem”.

One can define the information content of an online problem in the common
worst-case manner, parameterized by the size of the problem instances. Hence,
infP (n) would be the maximum of infP (I) over all instances I of size n. However,
to get an exact definition of infP (n), one still has to fix the way in which the
advice bits are communicated. The first paper [5] investigating the number of
advice bits necessary for solving online problems optimally proposed that the
online algorithm may pose a sequence of questions and it always gets the right
answer as a non-empty sequence of bits. The sum of the lengths of all answers is
the advice complexity. This kind of measurement is rough, because one can code
also a lot of information in the lengths of the individual answers and in this way
the whole communication can be viewed as a string over three symbols. In fact,
the authors of [5] proved that this measurement is rough up to a multiplicative
constant factor.

One possible solution to fix the problems of the model introduced in [5] has
been proposed in [6]. Here, the algorithm receives an advice of fixed constant
length k with each request. The length k is used as a measure of the advice
complexity of the problem; for an input consisting of n requests, exactly kn bits
of advice are used. This model enforces a smooth flow of the advice information,
since the same amount of advice is made available to the algorithm in every
request. It is not possible, however, to employ this model to analyze online
algorithms that use less than n bits of advice. This is a significant drawback,



because many well-known online problems are very easy to solve optimally with
one bit of advice available in every request.

Another approach to define the communication of the advice bits, introduced
in [2], is to relax the requirement of a smooth advice information flow and to
follow a way analogous to the definition of randomized Turing machines. In the
case of randomization, the Turing machine is augmented with a separate tape
containing random bits. It is then possible to measure the amount of randomness
used as the number of bits accessed on the random tape. Similarly, we can provide
an advice tape to the online algorithm. The algorithm can access this tape in
an arbitrary way and the advice complexity is measured as the total number
of advice bits accessed over the whole computation. In this way, it is perfectly
possible to analyze problems that use less than 1 advice bit per request on
average. The advice complexity can be sublinear as well.

In the sequel, we provide a more formal definition of the information content
of an online problem which coincides with the advice complexity as defined in [2].
At first, we define the advice complexity of an online algorithm:

Definition 1. An online algorithm A with advice computes the output sequence
A
φ(I) = (y1, . . . , yn) such that yi is computed from φ, x1, . . . , xi, where φ is the

content of the advice tape, i. e., an infinite binary sequence, and I = (x1, . . . , xn)
is an input instance of the considered online problem. Algorithm A is c-competitive
with advice complexity s(n) if, for every n and for each input sequence I of
length n, there exists some φ such that the competitive ratio of algorithm A on I
is at most c, i. e., crA(I) ≤ c, and no positions of φ except the first s(n) bits are
accessed during the computation of Aφ(I).

Now we are ready to formally define the information content infP (n) of an
online problem P . More precisely, we define upper and lower bounds on the in-
formation content infP (n). The definition of the upper bound is straightforward:

Definition 2. A function f(n) is an upper bound on infP (n) if and only if
there exists a 1-competitive online algorithm A with advice complexity s(n) such
that s(n) ≤ f(n) for all n.

It is, however, more tricky to find a suitable definition of the lower bound on
the information content. As a first attempt, we can make a simple modification
to the definition of the upper bound:

Definition 3. A function g(n) is a lower bound on infP (n) if and only if, for
every 1-competitive online algorithm A with advice complexity s(n), it holds that
s(n) ≥ g(n) for all n.

Unfortunately, this definition has a serious drawback: It is possible to store
a constant, but arbitrarily high, amount of information in the online algorithm
itself. In certain cases, such information can be used to solve some input instances
very efficiently. In such cases, no nontrivial lower bound on infP (n) can be given
in the sense of Definition 3.

As an example of such a situation, consider the following (rather artificial)
online problem:



Definition 4 (Guess the Input Length Problem). An input instance of the
Guess the Input Length problem (GIL) consists of n requests. Each of the first
n − 1 requests is the symbol 0 and the last request is the symbol 1. The online
algorithm must guess the number of requests after the first request is received,
i. e., it must output n as an answer to the first request. No answer is required
for any other request.

For any n, we can construct an algorithm that, given advice containing a
single bit 0, outputs n. If the first bit of advice is 1, the algorithm reads the
complete number from the advice tape and outputs it. In such a way, Θ(log n′)
advice bits are used for all numbers n′ 6= n, but a single bit of advice is sufficient
for an input of length n. Hence, the only feasible lower bound on infGIL(n) in
the sense of Definition 3 is g(n) = 1.

One possible approach to avoid this problem is to allow the lower bound to
be valid only from some minimal n0 that depends on the online algorithm:

Definition 5. A function g(n) is a lower bound on infP (n) if and only if, for
every 1-competitive online algorithm A with advice complexity s(n), there exists
some n0 such that s(n) ≥ g(n) holds for all n ≥ n0.

Easily, the Kolmogorov complexity K(n) of the number n is an upper bound
on infGIL(n). Intuitively, K(n) should be a lower bound on infGIL(n) as well.
Indeed, the online algorithm must output the number n without any a-priori in-
formation, the whole information about n must be contained in the used advice.
To define the exact value of K(n), we have to fix some “programming language”
with respect to which we measure the Kolmogorov complexity. However, once
this programming language is fixed, it might still be possible to create a more so-
phisticated online algorithm for GIL that saves some constant amount of advice
for infinitely many inputs. Furthermore, we are not able to provide any bounds
on such a constant. Hence, we cannot use the function K(n)−c as a lower bound
of infGIL(n), regardless of the choice of the constant c. We may, however, relax
Definition 5 in the following way:

Definition 6. A function g(n) is a lower bound on infP (n) if and only if, for
every 1-competitive online algorithm A with advice complexity s(n), there exists
some constant ∆ such that s(n) +∆ ≥ g(n) holds for all n.

It is not difficult to see that K(n) is a lower bound on infGIL(n) in the sense
of Definition 6. A drawback of such a definition is that a lower bound can be in
fact larger than an upper bound. The difference between the two, however, can
be at most constant, hence it is not an issue if an asymptotic analysis is done.

Alternatively, we could use another way to relax Definition 5:

Definition 7. A function g(n) is a lower bound on infP (n) if and only if, for
every 1-competitive online algorithm A with advice complexity s(n), s(n) ≥ g(n)
holds for infinitely many n.



Such a definition of a lower bound is very weak – a lower bound can be
arbitrarily larger than an upper bound on infinitely many values. Nevertheless,
it is not possible that a lower bound is asymptotically larger than an upper
bound. On a positive side, Definition 7 allows us to easily claim a lower bound
of log2(n) on infGIL(n) due to the existence of incompressible strings.

Another approach to avoid the problems of Definition 3 is to actually modify
the definition of advice complexity (Definition 1) to require that s(n) bits of
advice are sufficient to solve all input instances of length at most n. After such
modification, we can easily claim log2(n) to be a lower bound on infGIL(n) in
the sense of Definition 3.

We have presented several possible ways how to define a lower bound on the
information content of an online problem. Nevertheless, there is usually little
difference between them for the relevant online problems. In the rest of this
paper, we stick to the strongest Definition 3, despite to its deficiencies, since all
presented results hold with respect to this definition as well. As a shorthand, we
write

infP (n) ≤ f(n)

if f(n) is an upper bound on infP (n) and

infP (n) ≥ g(n)

if g(n) is a lower bound on infP (n).
In the sequel, we show that the information content of online problems can be

very different even for well-known natural problems. As an example of a problem
with a very low information content, consider the SkiRental problem (for a
definition, see, e. g., [3]). For any input instance, the optimal solution of the
SkiRental problem has very simple structure: Either it consists of buying the
skis at the very beginning, or it consists of renting the skis all the time. Hence, a
single bit of advice is sufficient (and necessary) to solve the SkiRental problem
optimally for input instances of arbitrary lengths. Thus, we have a tight bound
on the information content of the SkiRental problem: infSkiRental(n) = 1.

Next, we show that the well-known Paging problem is an example of an
online problem that has linear information content, i. e., any optimal algorithm
for this problem requires Θ(n) advice bits, where n is the number of requests.

Definition 8 (Paging Problem). The input is a sequence of integers repre-
senting requests to logical pages I = (x1, . . . , xn), xi > 0. An online algorithm
A maintains a buffer (content of the physical memory) B = {b1, . . . , bK} of K
integers, where K is a fixed constant known to A. Before processing the first re-
quest, the buffer gets initialized as B = {1, . . . ,K}. Upon receiving a request xi,
if xi ∈ B, then yi = 0. If xi 6∈ B, then a page fault occurs, and the algorithm
has to find some victim bj, i. e., B := B \ {bj} ∪ {xi}, and yi = bj. The cost of
the solution A = A(I) is the number of page faults, i. e., C(A) = |{yi : yi > 0}|.

In fact, the paging problem is not a single problem, but rather a collection of
problems parameterized by the buffer size K. For simplicity, however, we omit



this parameter from the notation of the problem, and assume that K is a fixed
constant known to the online algorithm. It is not difficult to prove a linear upper
bound on the information content of Paging [1, 2]:

Theorem 1.
infPaging(n) ≤ n+K

Proof. It is sufficient to show that there is an optimal online algorithm (i. e., a
1-competitive algorithm) solving Paging with advice complexity n+K.

Consider an input sequence I and an optimal offline algorithm Opt processing
it. In each step of Opt, call a page currently in the buffer active if it will be
requested again before Opt replaces it by some other page. We design A such that,
in each step i, the set of Opt’s active pages will be in B, and A will maintain with
each page an active flag identifying this subset. If A gets an input xi that causes
a page fault, some passive (i. e., non-active) page is replaced by xi. Moreover,
A reads with each input also one bit from the advice tape telling whether xi

is active for Opt. Since the set of active pages is the same for Opt and A, it is
immediate that A generates the same sequence of page faults.

Algorithm A consumes one bit of advice with every request. Moreover, it
needs to receive the information about which pages that are stored in the buffer
at the beginning of the computation are active. Hence, A reads n + K bits of
advice in total. ⊓⊔

Next, we provide a lower bound on infPaging(n) that shows that the above-
described upper bound is tight if the buffer size K is large [1, 2], that is, any
optimal algorithm for Paging must consume almost one bit of advice for every
request:

Theorem 2. There exists a fixed constant C that does not depend on K such
that

infPaging(n) ≥ n

(

1− log(K − 1) + C

4(K − 1)

)

−O(1)

holds. The constant of O(1) depends on K.

Proof. The main idea of the proof is, for any input length n, to construct a set
of input instances that are sufficiently different, i. e., that any two instances from
this set provably need a different advice if they are to be solved in an optimal
way.

We now formally describe how to construct such a set of inputs I. Let ν :=
⌊n/(2K − 2)⌋ and Z :=

(

2K−2
K−1

)

. The set I consists of Zν inputs organized in
a complete Z-ary tree of height ν, where each edge is labeled with a sequence
of 2K − 2 requests. Each leaf of the tree represents one input from I which is
obtained by concatenating the request sequences on all edges of the path from
the root to this leaf. Let Nh denote the sequence of K − 1 requests (hK +
1, hK + 2, . . . , hK +K − 1). Let us denote the root of the tree to be on level 1,
the sons of the root to be on level 2, etc. Each edge e leading from a vertex v
of level h is labeled with the sequence Nh followed by the sequence S(e). The



sequences S(e) are defined recursively as follows. For each vertex v, consider a
set of K elements m(v); the intuition is that m(v) is the content of the memory
of some optimal algorithm processing the given input. Let us define m(root) =
{1, . . . ,K}. Inductively, consider a vertex v of level h with m(v) already defined.
The sequences S(e) of the outgoing edges contain (K − 1)-element subsets of
the set m(v) ∪ Nh such that they do not contain the element hK + K − 1
(the ordering within the sequence is not important; to avoid ambiguity, let us
assume the sequences S(e) are increasing). For any edge e = (v, v′), let us set
m(v′) := S(e) ∪ {hK + K − 1}. Since, by using this procedure, we keep the
invariant that m(v) ∩Nh = ∅, there are exactly Z =

(

2K−2
K−1

)

possible subsets, a
unique one for every son of v.

In this way, we obtain a set of instances of length ν(2K − 2). Each of these
instances can be extended to the length n by repeating the last request n −
ν(2K − 2) = nmod(2K − 2) times.

The intuition behind this construction is as follows. Every vertex of the tree
represents some prefix of some input in I. When an optimal algorithm has
processed a prefix of an input instance that corresponds to a vertex v, the content
of its buffer is m(v). At that moment, a sequence Nh of requests arrives, where h
is the level of v. All of the requested pages in Nh are new. Thus, they are not in
the buffer and the algorithm must make a page fault for each of them. However,
the algorithm can choose which pages in the buffer will be overwritten. In this
way, after processing Nh, the algorithm can obtain any content of the buffer that
is a subset of m(v) ∪Nh that contains K elements and one of these elements is
hk +K − 1 (the last request of Nh).

After processing Nh, the set of control requests S(e) follows. If the algorithm
made a correct choice while processing Nh, all elements of S(e) are in the buffer
after processingNh, hence no page faults are generated while processing S(e). On
the other hand, if a wrong choice was made, at least one page fault is necessary.
Easily, once a wrong choice is made, the algorithm cannot be optimal.

Assume that two inputs from I are given the same advice. Let v be the vertex
representing the longest common prefix of these inputs, and h be the level of
v. The online algorithm makes the same choice while processing Nh. Therefore,
this choice is wrong in at least one of the inputs, and the online algorithm fails
to achieve optimality.

Hence, the advice complexity of A has to be at least log(|I|) = log(Zν) =
ν log(Z) bits:

s(n) ≥ ν log(Z) =

⌊

n

2K − 2

⌋

log

(

2K − 2

K − 1

)

≥
(

n

2K − 2
− 1

)

log

(

2K − 2

K − 1

)

=
n

2K − 2
log

(

2K − 2

K − 1

)

−O(1).

(1)

Using the Stirling formula, we have

(

2t

t

)

=
(2t)!

(t!)2
≥

√
2π2t

(

2t
e

)2t

(√
2πt

(

t
e

)t (

1 +O
(

1
t

))

)2 ≥ 22t · D√
t

(2)



for some constant D not depending on K. Substituting t := K − 1 into (2) and
(1), we complete the proof:

s(n) ≥ n

(

1

2K − 2
log

(

22(K−1) D√
K − 1

))

−O(1)

= n · 2(K − 1) + log(D)− 1
2 log(K − 1)

2K − 2
−O(1)

= n

(

1− −2 log(D) + log(K − 1)

4K − 4

)

−O(1).

⊓⊔

The information content of some other online problems has been analyzed
in [1,2]. In particular, the problem of Disjoint Path Allocation (DisPathAlloc

for short) and the problem of Job Shop Scheduling for Two Jobs (JSSchedule
for short) have been considered. For definitions and more information about
these problems, see, e. g., [3] and [7, 8], respectively.

The DisPathAlloc problem is an another example of an online problem
with high information content: Any optimal algorithm for DisPathAlloc needs
at least n/2− 1 bits of advice to solve input instances with n requests. On the
other hand, there is a very simple optimal algorithm that consumes one bit of
advice for every request. Hence, we can write n ≥ infDisPathAlloc(n) ≥ n/2− 1.

The JSSchedule problem, on the other hand, has a lower information con-
tent. If there are n jobs to be scheduled, 2⌈√n⌉ advice bits are sufficient to find
the optimal solution. This bound is asymptotically tight, i. e., Ω(

√
n) of advice

bits are necessary.
The following table summarizes the known results about the information

content of the discussed online problems:

P Upper bound on infP (n) Lower bound on infP (n)

Paging n+K n

(

1− log(K−1)+C

4(K−1)

)

−O(1)

DisPathAlloc n
n

2
− 1

JSSchedule 2⌈√n⌉ Ω(
√
n)

Table 1: Upper and lower bounds on the information content of online problems.

3 Relative Information Content of Online Problems

So far, we have focused on the full information content of online problems, defined
as the size of advice about future requests that is needed to solve the problem



optimally. The requirement of an optimal solution is, however, very strict. In the
context of online problems, suboptimal solutions are often analyzed and their
quality is measured by their competitive ratio. Hence, it makes sense to consider
a trade-off between the competitive ratio of an online algorithm and the size
of the advice needed to achieve this ratio. This leads us to the definition of
information content of an online problem P relative to the competitive ratio r,

denoted as inf
(r)
P (n). Again, we define upper and lower bounds on inf

(r)
P (n):

Definition 9. A function f(n) is an upper bound on inf
(r)
P (n) if and only if

there exists an r-competitive online algorithm A with advice complexity s(n) such
that s(n) ≤ f(n) for all n.

Definition 10. A function g(n) is a lower bound on inf
(r)
P (n) if and only if, for

every r-competitive online algorithm A with advice complexity s(n), it holds that
s(n) ≥ g(n) for all n.

The discussion about alternative definitions of the information content is
valid for the definition of relative information content as well. Thus, it is possible
to create variants of Definition 10 in an analogous way to Definitions 5, 6, and
7.

Several results about the relative information content of online problems are
known as well [1, 2]. For the paging problem, it is known that linear advice
is necessary to achieve competitive ratios close to 1. More precisely, for any

1 ≤ r ≤ 1.25 and any fixed K, inf
(r)
Paging

≥ Ω(n). The constant hidden in the
asymptotic notation, however, depends on r and K. The precise bound can be
formulated as follows [1, Theorem 2]:

Theorem 3. Let r be any constant such that 1 ≤ r ≤ 1.25. It holds that

inf
(r)
Paging

≥ n

2K − 2

[

1 + log(3− 2r)− (2r − 2) log

(

1

2r − 2
− 1

)]

−O(1).

The constant of O(1) depends on K and the parameter r.

The idea behind the proof of Theorem 3 is to consider the set of instances
defined in the proof of Theorem 2 and adapt the analysis for the case of algo-
rithms with a fixed competitive ratio. The lower bound of Theorem 3 can be
complemented by the following upper bound [1, Theorem 1] which states that,
for any r, it is possible to achieve an r-competitive algorithm for Paging with
linear advice. Moreover, the linearity constant tends to 0 with growing r:

Theorem 4. For each constant r ≥ 1, it holds that

inf
(r)
Paging

≤ n log

(

r + 1

r
r

r+1

)

+ 3 logn+O(1).



Theorems 3 and 4 suggest that large advice is necessary for Paging if a
constant competitive ratio is required. Now we focus on the opposite end of the
competitive ratio spectrum, where the competitive ratio is not a fixed constant.

It is a well-known fact that any deterministic algorithm for paging cannot
be better than K-competitive [3]. It is, however, an interesting fact that even
extremely small advice can significantly improve this ratio. For example, just two
bits of advice for the whole input instance are sufficient to obtain an algorithm
with competitive ratio K/2+ 7.5, regardless of the number of input requests. In

general, b bits of advice are sufficient to obtain a competitive ratio of 2(K+1)
2b

+
3b+ 1 [1, Theorem 5]:

Theorem 5. Let b be any fixed integer and let

r :=
2(K + 1)

2b
+ 3b+ 1.

Then

inf
(r)
Paging

≤ b.

The main idea behind this result is to construct 2b deterministic paging
algorithms that are sufficiently different and that the total number of page faults
they make together has a reasonable upper bound. It turns out that the idea
of marking algorithms (as described in [3]) can be used to achieve this goal.
Afterwards, we can argue that, for any input instance, at least one of these
algorithms works well. The advice provided is then just an identification of the
best possible algorithm from the constructed set.

On the other hand, it is possible to prove a lower bound corresponding to
Theorem 5 [1, Theorem 6]. In fact, this lower bound shows that the upper bound
of Theorem 5 is almost tight for small b:

Theorem 6. Let b be any fixed integer and let r := K/2b. Then

inf
(r)
Paging

≥ b.

The idea behind this lower bound is not very involved. It is sufficient to
consider a set of all possible input instances of length n that use only numbers
1 to K + 1 in their requests. It is not difficult to see that the optimal algorithm
makes at most n/K page faults for any such instance. On the other hand, if the
advice is short, there are many different inputs with the same advice, what can
be used to infer that the algorithm makes sufficiently many page faults on at
least one of them.

For the DisPathAlloc problem, we have the following lower bound on the
relative information content [1, Theorem 8]:

Theorem 7.

inf
(r)
DisPathAlloc

≥ n+ 2

2r
− 2



Furthermore, it is not difficult to provide an upper bound on inf
(r)
DisPathAlloc

that is only a factor of logn away from the lower bound of Theorem 7 for large
r, and that is asymptotically tight for constant r [1, Theorem 9]:

Theorem 8.

inf
(r)
DisPathAlloc

≤ min

{

(n

r
+ 3

)

logn+O(1), n log
r

(r − 1)
r−1

r

+ 3 logn+O(1)

}

For the JSSchedule problem, it is straightforward to adapt the randomized
algorithm of [7] to achieve an algorithm with small (logarithmic) advice and a
competitive ratio close to 1:

Theorem 9. There is an online algorithm for JSSchedule with advice com-
plexity s(n) ≤ 1 + log(n) that achieves competitive ratio O(1 + 1/

√
n). Hence,

inf
(r)
JSSchedule

≤ 1 + log(n),

for any r > 1.

4 Relating Information Content to Computational

Complexity

As already mentioned, the first fundamental contribution of informatics to sci-
ence was the development of the formal concept of an algorithm. The second
most important concept discussed in informatics is the concept of computa-
tional complexity. The above proposed definitions of the information content of
online problems are not related to this concept. This is the same case as for the
Kolmogorov complexity that is also not related to the complexity of generating
strings from their representations. But for relating the Kolmogorov complexity
to the computational complexity of string generation, the concept of resource-
bounded Kolmogorov complexity has been developed. It is possible to apply a
similar idea in order to combine the information content of online problems with
the efficiency of online algorithms.

For any function f : N → N, we define the f -resource-bounded information
content of an online problem P relative to the competitive ratio r, denoted as

inf
(f,r)
P (n):

Definition 11. Consider the function f : N → N. The function h(n) is an upper

bound on inf
(f,r)
P (n) if and only if there exists an r-competitive online algorithm

A with advice complexity s(n) such that s(n) ≤ h(n) for all n, and the running
time of A is at most f(n) for any input of length n.

Definition 12. Consider the function f : N → N. The function g(n) is a lower

bound on inf
(f,r)
P (n) if and only if, for every r-competitive online algorithm A

with advice complexity s(n) such that the running time of A is at most f(n) for
any input of length n, it holds that s(n) ≥ g(n) for all n.



In our examples of online problems such as Paging, DisPathAlloc, or
JSSchedule, the computational complexity does not matter, because all upper
bounds on the number of advice bits can be achieved by efficient online algo-
rithms with advice. But this is not necessarily true for any online problem. If one
considers the special online problem GIL (estimating the length of the input),
the Kolmogorov complexity of the lengths does not need to be an upper bound
on the number of advice bits. An interesting research idea would be to study this
phenomenon for “natural” optimization problems. If an NP-hard optimization
problem has to be solved in polynomial time in an online manner, then it is not
necessarily sufficient to get a compressed version of the whole input.
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and M. Bieliková, editors, Proc. of the 34th International Conference on Current
Trends in Theory and Practice of Computer Science (SOFSEM 2008), volume
4910 of Lecture Notes in Computer Science, pages 247–258, Berlin, 2008. Springer-
Verlag.

6. Y. Emek, P. Fraigniaud, A. Korman, and A. Rosén. Online computation with
advice. In S. Albers, A. Marchetti-Spaccamela, Y. Matias, S. E. Nikoletseas, and
W. Thomas, editors, Proc. of the 36th International Colloquium on Automata, Lan-
guages and Programming (ICALP 2009), volume 5555 of Lecture Notes in Com-
puter Science, pages 427–438. Springer-Verlag, 2009.
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