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sComenius University, BratislavaSlovakiaAbstra
t. In the 
ontext of quantum 
omputing, reversible 
omputa-tions play an important role. In this paper the model of the reversiblepebble game introdu
ed by Bennett is 
onsidered. Reversible pebblegame is an abstra
tion of a reversible 
omputation, that allows to ex-amine the spa
e and time 
omplexity for various 
lasses of problems. Wepresent a te
hnique for proving lower and upper bounds on time andspa
e 
omplexity. Using this te
hnique we show a partial lower boundon time for optimal spa
e (time for optimal spa
e is not o(n lg n)) anda time-spa
e tradeo� (spa
e O( kpn) for time 2kn) for a 
hain of lengthn. Further, we show a tight optimal spa
e bound (h+�(lg� h)) for a bi-nary tree of height h and we dis
uss spa
e 
omplexity for a butter
y. Bythese results we give an eviden
e, that for reversible 
omputations moreresour
es are needed with respe
t to standard irreversible 
omputations.1 Introdu
tionStandard pebble game was introdu
ed as a graph-theoreti
 model, that enablesto analyse time-spa
e 
omplexity of deterministi
 
omputations. In this model,values to be 
omputed are represented by verti
es of a dire
ted a
y
li
 graph.An edge from a vertex a to a vertex b represents the fa
t, that for 
omputingthe value a, the value b has to be already known. Computation is modelled bylaying and removing pebbles on/from the verti
es. Pebbles represent the memorylo
ations. A pebble laying on a 
ertain vertex represents the fa
t that the valueof this vertex is already 
omputed and stored in the memory.The importan
e of the pebble game is in the following two step paradigm:1. the inherent stru
ture of studied problem forms the 
lass of a
y
li
 graphs;investigate time-spa
e 
omplexity of pebbling this 
lass of graphs;2. apply the obtained time-spa
e results to 
reate a time eÆ
ient spa
e re-stri
ted 
omputation of the original studied problem.Various modi�
ations of this game were studied in 
onne
tion with di�er-ent models of 
omputations (e.g. pebble game with bla
k and white pebbles fornondeterministi
 
omputations, two person pebble game for alternation 
om-putations, pebble game with red and blue pebbles for input-output 
omplexity? Supported in part by grant from VEGA 1/7155/20.



analysis, pebble game with labels for database serializability testing, et
., see[7℄).In 
onne
tion with quantum 
omputing, the model of reversible 
omputationsis very interesting. As the basi
 laws of quantum physi
s are reversible, also thequantum 
omputation has to be reversible. That means, that ea
h state of the
omputation has to uniquely de�ne both the following and the pre
eding stateof the 
omputation.Another motivation to examine the model of reversible 
omputation followsfrom the fa
t, that reversible operations are not known to require any heatdissipation. With 
ontinuing miniaturisation of 
omputing devi
es, redu
tion ofthe energy dissipation be
omes very important. Both these reasons for studyingreversible 
omputations are mentioned in [9℄, [2℄, [5℄ and [4℄.A modi�
ation of the standard pebble game for modelling reversible 
ompu-tations is the reversible pebble game. Reversible pebble game enables to analysetime and spa
e 
omplexity and time-spa
e trade-o�s of reversible 
omputations.In this paper, three basi
 
lasses of dags are 
onsidered: the 
hain topology,the 
omplete binary tree topology and the butter
y topology. These topologiesrepresent the stru
ture of the most 
ommon problems.It is evident, that minimal spa
e 
omplexity for standard pebble game on
hain topology is O(1), minimal time 
omplexity is O(n) and minimal spa
e andtime 
omplexities 
an be a
hieved simultaneously. For reversible pebble game,in [4℄ was proved minimal spa
e 
omplexity on the 
hain topology in the formO(lg n) and upper bound on time 
omplexity for optimal spa
e 
omplexity inthe form O(nlg 3). In [1℄ it was introdu
ed a pebbling strategy, that yields anupper bound of time-spa
e tradeo� for reversible pebble game on 
hain in theform: spa
e O(k�1lg k lgn) versus time 
(n lg(2k�1)lg k ).We show that optimal time for optimal spa
e 
omplexity 
annot be o(n lgn).Further, we show the upper bound on the time-spa
e tradeo� for reversiblepebble game on 
hain in the form: spa
e O( kpn) versus time 2kn.Minimal spa
e 
omplexity h + 1 for standard pebble game on a 
ompletebinary tree of height h was proved in [6℄. We show a tight spa
e bound forreversible pebble game on a 
omplete binary tree in the form h + �(lg� h).These results give an eviden
e, that more resour
es are needed for reversible
omputation in 
omparison with irreversible 
omputation.2 PreliminariesReversible Pebble Game is played on dire
ted a
y
li
 graphs. Let G be a dag.A 
on�guration on G is a set of its verti
es 
overed by pebbles. Let C be a
on�guration, the formula C(v) = 1 denotes the fa
t that the vertex v is 
overedby a pebble. Analogi
ally, C(v) = 0 denotes that the vertex v is un
overed. Wedenote the number of pebbles used in a 
on�guration C as #(C). An empty
on�guration on G is denoted as E(C). Empty 
on�guration is a 
on�gurationwithout pebbles. The rules of Reversible pebble game are the following:



R1 A pebble 
an be laid on a vertex v if and only if all dire
t prede
essors ofthe vertex v are 
overed by pebbles.R2 A pebble 
an be removed from a vertex v if and only if all dire
t prede
essorsof the vertex v are 
overed by pebbles.Reversible pebble game di�ers from standard pebble game in rule R2 { instandard pebble game, pebbles 
an be removed from any vertex at any time.An ordered pair of 
on�gurations on dag G, su
h that the se
ond one followsfrom the �rst one a

ording to these rules, is 
alled a transition.For our purposes, a transition 
an be also a pair of two identi
al 
on�gura-tions. A nontrivial transition is a transition not formed by identi
al 
on�gura-tions.Important property of a transition in a reversible pebble game is symmetry.From the rules of the game follows, that if (C1; C2) forms a transition, then also(C2; C1) forms a transition.A 
omputation on graph G is a sequen
e of 
on�gurations on G su
h thatea
h su

essive pair forms a transition. Let C be a 
omputation, C(i) denotesthe i-th 
on�guration in the 
omputation C. A 
omputation C is a 
omplete
omputation, if and only if the �rst and the last 
on�gurations of C are empty(e.g. #(C(1)) = #(C(n)) = 0, where n is the length of the 
omputation C) andfor ea
h vertex v there exists a 
on�guration C in C, su
h that v is 
overed inC. We shall be interested in spa
e and time 
omplexities of a 
omputation C.Spa
e of a 
omputation C (denoted as S(C)) is the number of pebbles needed toperform the 
omputation { that is the maximum number of pebbles used over all
on�gurations of C. Time of a 
omputation C (denoted as T(C)) is the numberof nontrivial transitions in C.The minimal spa
e of the reversible pebble game on the dag G (denoted asSmin(G)) is the minimum of S(C) over all 
omplete 
omputations C on G. Thetime T(G; s) of the reversible pebble game on the dag G with at most s pebbles isthe minimum of T(C) over all 
omplete 
omputations C on G su
h that S(C) � s.Let G be a 
lass of dags. Then the minimal spa
e fun
tion Smin(n) of a 
lassG is the maximum of Smin(G) over all dags in the sub
lass Gn. The time fun
tionT(n; s) is the maximum of T(G; s) over all dags G in the sub
lass Gn.2.1 Operations on ComputationsFor proving upper and lower bounds on time and spa
e 
omplexities of the re-versible pebble game, it is useful to manipulate formally with reversible 
ompu-tations. We will use an algebrai
 way to des
ribe 
omputations. An advantage ofthis approa
h is in high pre
ision of the des
ription. In this se
tion we introdu
esome operations for 
onstru
ting and modifying 
omputations.For 
hanging state of a parti
ular vertex in a 
on�guration, we use the oper-ation Put.De�nition 1. Let G = (V;E) be a dag, C be a 
on�guration on G. Let v 2 Vand h 2 f0; 1g. Then Put(C; v; h) is a 
on�guration on G de�ned as follows:



{ Put(C; v; h)(u) = C(u), if u 2 V and u 6= v;{ Put(C; v; h)(u) = h, if u 2 V and u = v.An important property of reversible 
omputations is the following one: Let Gbe a dag, G0 be a subgraph of G and C be a 
omputation on G. If we remove allverti
es not in G0 from all 
on�gurations of C, we obtain a reversible 
omputationon G0. The 
orre
tness of su
h 
onstru
tion is 
lear { we 
annot violate anyrule of reversible pebble game by removing a vertex from all 
on�gurations ofa 
omputation. Another important fa
t is, that removing some 
on�gurationsfrom the beginning and the end of a reversible 
omputation does not violate aproperty of a reversible 
omputation, too.Also, we 
an de�ne an operator for a \restri
tion" of a 
omputation:De�nition 2. Let G = (V;E) be a dag, V 0 � V . Let C be a 
omputation of thelength n on G. A Restri
tion C0 = Rst(C; i; j; V 0) of the 
omputation C to aninterval fi : : : jg (1 � i � j � n) and to a subgraph G0 = (V 0; E \ (V 0 � V 0)) isa 
omputation C0 of the length j � i+ 1 on G0 de�ned as follows:(8k 2 f1 : : : j � i+ 1g)(8v 2 V 0)C0(k)(v) = C(i+ k � 1)(v)We use a notation Rst(C; i; j) when no verti
es should be removed (e.g. Rst(C; i;j) = Rst(C; i; j; V ) for the graph G = (V;E)).From the symmetry of the rules of the reversible pebble game follows, thatreversing a reversible 
omputation does not violate the reversible 
omputationproperty. We 
an therefore de�ne an operator Rev.De�nition 3. Let C be a 
omputation on G of the length n. Then the reverse ofthe 
omputation C (denoted as Rev(C)) is a 
omputation on G de�ned as follows:(8i 2 f1 : : : ng) Rev(C)(i) = C(n+ 1� i)Now we introdu
e operations, that are inverse to restri
tion in some sense.De�nition 4. Let C1 and C2 are 
omputations on a dag G, let C1 and C2 havelength n1 and n2 respe
tively. Let C1(n1) and C2(1) form a transition. Then thejoin of 
omputations C1 and C2 (denoted as C1 + C2) is a 
omputation on G oflength n1 + n2 de�ned as follows:{ (C1 + C2)(i) = C1(i), if i � n1{ (C1 + C2)(i) = C2(i� n1), if i > n1It is 
lear, that this de�nition is 
orre
t. Con�gurations (C1 + C2)(n1) and(C1 + C2)(n1 + 1) form a transition by assumption. All other su

essive pairs of
on�gurations form transitions, be
ause C1 and C2 are 
omputations.Let C be a 
on�guration on a dag G. Then we 
an look at a 
on�gurationC also as at a 
omputation of length 1, so that C(1) = C. Therefore we 
an alsojoin a 
omputation with a 
on�guration and vi
e versa.The join of two 
omputations is an inverse operation to restri
tion by re-moving 
on�gurations. Now we de�ne an inverse operation to the restri
tionperformed by removing verti
es.



De�nition 5. Let G = (V;E) be a dag, V1 � V , V2 � V , V1 \ V2 = ;. Let Cbe a 
on�guration on the graph (V2; E \ (V2 � V2)). Let f(w; v)jv 2 V1 ^ w 2V2^C(w) = 0^(w; v) 2 Eg = ;. Let C be a 
omputation of length n on the graph(V1; E\(V1�V1)). The 
omputation C merged with the 
on�guration C (denotedas C �C) is a 
omputation on the graph (V1 [ V2; E \ ((V1 [ V2)� (V1 [ V2))) oflength n de�ned as follows:{ (C � C)(i)(v) = C(i)(v), if v 2 V1{ (C � C)(i)(v) = C(v), if v 2 V2This de�nition is 
learly 
orre
t. By adding the same 
on�guration to all
on�gurations of some 
omputation C, it is only one way to violate the rulesof the reversible pebble game: if some of the added dire
t prede
essors of avertex, whi
h the pebble is laid on or removed from, are not pebbled. But thisis prohibited by the assumption of de�nition.Any 
omputation on a graph G 
an be applied on any graph G0 that isisomorphi
 with G. The appli
ation of a 
omputation 
an be de�ned as follows:De�nition 6. Let C be a 
omputation of length n on a dag G and G0 be adag isomorphi
 with G. Let ' is the isomorphism between G0 and G. Then a
omputation C applied to the graph G0 (denoted as CjG0) is a 
omputation onG0 of length n su
h that (CjG0)(i)(v) = C(i)('(v)) for all 1 � i � n and for allverti
es v of G0.3 Chain TopologyThe simplest topology for a pebble game is a 
hain. Chain with n verti
es(denoted as Ch(n)) is a dag Ch(n) = (V;E), where V = f1 : : : ng and E =f(i� 1; i)ji 2 f2 : : : ngg. This topology is an abstra
tion of a simple straightfor-ward 
omputation, where the result of step n + 1 
an be 
omputed only fromthe result of step n.In this se
tion we dis
uss optimal spa
e 
omplexity for a reversible pebblegame on the 
hain topology { the minimal spa
e fun
tion Smin(n) for Ch, wherethe sub
lass Chn 
ontains only a 
hain Ch(n). We will dis
uss also partial lowerand upper bounds for optimal time and spa
e 
omplexities { the time fun
-tion T(n; Smin(n)) and the upper bound of the time-spa
e tradeo� for the 
haintopology.3.1 Optimal Spa
e for the Chain TopologyFor determining spa
e 
omplexity of the reversible pebble game on the 
haintopology we will examine the maximum length of the 
hain, that 
an be peb-bled by p pebbles. We denote this length as S�1(p). It holds, that S�1(p) =maxfmj(9C 2 CCh(m)) S(C) � pg, where CCh(m) is the set of all 
omputationson the graph Ch(m).



Reversible pebble game on the 
hain topology was studied in 
onne
tionwith reversible simulation of irreversible 
omputation. C. H. Bennett suggestedin [1℄ a pebbling strategy, whose spe
ial 
ase has spa
e 
omplexity �(lg n). Spa
eoptimality of this algorithm was proved in [5℄ and [4℄. This result is formulatedin following theorem.Theorem 1. It holds that S�1(p) = 2p�1. Therefore for minimal spa
e fun
tionof 
hain topology Smin(n) it holdsSmin(n) = �(lgn)3.2 Optimal Time and Spa
e for the Chain TopologyIn this se
tion we present upper and partial lower bounds on time for spa
eoptimal reversible pebble game played on a 
hain topology.We will use two auxiliary lemmas. Their proofs are not diÆ
ult and are leftout due to spa
e reasons.Lemma 1. Let C be a 
omplete 
omputation of length l on Ch(n), S(C) =Smin(n), T(C) = T(n; Smin(n)). Let i = minfiji 2 f1 : : : lg ^ C(i)(n) = 1g. Thenit holds that T(Rst(C; 1; i)) = T(Rst(C; i; l)) = T(C)2Lemma 2. Let C be a 
omplete 
omputation on Ch(S�1(p+ 1)) su
h that S(C) =p+ 1. It holds thatmaxfminfjjj 2 f1 : : : ng ^ C(i)(j) = 1gji 2 f1 : : : lgg = S�1(p) + 1Now we prove the upper and partial lower bound on time for spa
e optimalpebble game:Theorem 2. T(S�1(p+ 1); p+ 1) � 2S�1(p) + 2 + 2T(S�1(p); p)Proof. Let C be a time optimal 
omplete 
omputation on Ch(S�1(p+ 1)), su
hthat S(C) = p+1. Let l be the length of C. Clearly T(C) = T(S�1(p+1); p+1).We prove, that T(C) � 2S�1(p) + 2 + 2T(S�1(p); p) holds.Let n = S�1(p), G1 = (fn+ 1g; ;) and G2 be a graph obtained from Ch(n)by renaming verti
es to n+2 : : :2n+1 = S�1(p+1). Let i = minfiji 2 f1 : : : lg^C(i)(2n+ 1) = 1g. By Lemma 1 it holds T(Rst(C; 1; i)) = 12T(C). From Lemma2 follows, that Rst(C; k; k; f1 : : : n + 1g) 6= E(Ch(n)) � E(G1)) for all k and thatthere exists j su
h that Rst(C; j; j; f1 : : : n+1g) = E(Ch(n))�Put(E(G1); n+1; 1).W.l.o.g. we 
an assume j � i (otherwise we 
an repla
e C by Rev(C)). Let k be a
on�guration su
h that C(k�1)(n+1) = 0 and (8q)(k � q � j)C(q)(n+1) = 1).Clearly C(k � 1)(n) = C(k)(n) = 1.Now 
onsider the 
omputation C2 = Rst(C; 1; k�1; f1 : : : ng) �E(G1) �E(G2)+Rst(C; k; j; f1 : : : ng) �Put(E(G1); n+1; 1) �E(G2)+Rst(C; 1; i; fn+2 : : :2n+1g) �



E(Ch(n)) � Put(E(G1); n + 1; 1). Clearly S(C2) � S(C). Also, C2 + Rev(C2) is
omplete on Ch(2n+ 1) and T(C2) � T(Rst(C; 1; i)).It is 
lear, that T(Rst(C; 1; k�1; f1 : : : ng)) � n { we 
annot pebble n verti
eswith time less than n. Rev(Rst(C; k; j; f1 : : : ng))+Rst(C; k; j; f1 : : : ng) is a spa
eoptimal 
omplete 
omputation on Ch(n), therefore T(Rst(C; k; j; f1 : : : ng)) �12T(n; Smin(n)) = 12T(S�1(p); p). Analogi
ally, T(Rst(C; 1; i; fn+2 : : :2n+1g)) �12T(n; Smin(n)) = 12T(S�1(p); p).From these inequalities follows, that T(Rst(C; 1; i)) � n+1+2 12T(n; Smin(n)).Therefore T(C) � 2n+ 2 + 2T(n; Smin(n)) = 2S�1(p) + 2 + 2T(S�1(p); p). utCorollary 1. T(n; Smin(n)) = O(nlog2 3), T(n; Smin(n)) 6= o(n lgn),Proof. The upper bound was presented in [4℄. By solving re
urrent inequalityproved in pre
eding theorem, we obtain that T (n; Smin(n)) = 
(n lgn) for n =2p�1. Sin
e this fun
tion is a restri
tion of T (n; Smin(n)) for integer n, fun
tionT (n; Smin(n)) 
annot be o(n lgn). ut3.3 Upper Bound on Time-Spa
e Tradeo� for Chain TopologyIn the previous se
tion it was analysed time 
omplexity of reversible pebblingfor spa
e optimal 
omputations. Now we dis
uss the time 
omplexity for 
om-putations, that are not spa
e optimal.It is obvious, that for any 
omplete 
omputation C on Ch(n) it holds T(C) �2n, be
ause ea
h vertex has to be at least one time pebbled and at least onetime unpebbled. It is also easy to see, that spa
e of su
h 
omputation is exa
tlyn. Now we will analyse spa
e 
omplexity of 
omplete 
omputations on Ch(n)that are running in time at most 
�n. Let S�1(
; k) = maxfnj9C 2 CCh(n) S(C) �k ^T(C) � 
ng, where CCh(n) is the set of all 
omplete 
omputations on Ch(n).Theorem 3. For a �xed k, it holds S�1(2k; p) = 
(pk).Proof. We prove a statement S�1(2k; p) � 
(k)pk by indu
tion on k and p. Let
(1) = 1. The base 
ase S�1(21; p) � p holds trivially. (It is easy to make a
omplete 
omputation C on Ch(p) satisfying S(C) = p and T(C) = 2p.)Assume by the indu
tion hypothesis that it holds (8k0 < k)(8p0)S�1(2k0 ; p0) �
(k0)p0k0 and (8p0 < p)S�1(2k; p0) � 
(k)p0k. We prove, that S�1(2k; p) � 
(k)pkholds.Let C1 be a 
omplete 
omputation on Ch(S�1(2k�1; p� 1)), S(C1) � p � 1,T(C1) � 2k�1S�1(2k�1; p�1). Denote the length of C1 by l1. Clearly there existsm su
h that C1(m)(S�1(2k�1; p� 1)) = 1.Let C2 be a 
omplete 
omputation on Ch(S�1(2k; p� 1)), S(C2) � p � 1,T(C2) � 2kS�1(2k; p� 1).Let G1 = (fS�1(2k�1; p � 1) + 1g; ;). Let G2 is a graph obtained fromCh(S�1(2k; p� 1)) by renaming its verti
es to S�1(2k�1; p�1)+2; : : : ; S�1(2k�1;p�1)+1+S�1(2k; p�1). Now assume the following 
omputation C3 = Rst(C1; 1;m) �E(G1) �E(G2)+Rst(C1;m; l1) �Put(E(G1); S�1(2k�1; p� 1)+1; 1) �E(G2)+



(C2jG2) �E(Ch(S�1(2k�1; p� 1))) �Put(E(G1); S�1(2k�1; p�1)+1; 1)+Rev(Rst(C1;m; l1))�Put(E(G1); S�1(2k�1; p�1)+1; 1)�E(G2)+Rev(Rst(C1; 1;m))�E(G1)�E(G2).Clearly C3 is a 
omplete 
omputation on Ch(S�1(2k�1; p� 1) + 1 + S�1(2k;p� 1)) satisfying S(C3) � p and T(C3) � 2T(C1) + 2 + T(C2) � 2kS�1(2k�1; p�1) + 2 + 2kS�1(2k; p� 1) � 2k(S�1(2k�1; p� 1) + 1+ S�1(2k; p� 1)). ThereforeS�1(2k; p) � S�1(2k�1; p� 1) + 1 + S�1(2k; p� 1).By indu
tion hypothesis we have S�1(2k; p) � 
(k � 1)(p� 1)k�1 + 
(k)(p�1)k. For a suitable value of 
(k) (we 
an 
hoose 
(k) = 
(k�1)2k ) it holds that
(k � 1)(p � 1)k�1 + 
(k)(p � 1)k � 
(k)pk. Also there exists 
(k) su
h thatS�1(2k; p) � 
(k)pk. utCorollary 2. Let k be �xed. Then O( kpn) pebbles are suÆ
ient for a 
omplete
omputation on Ch(n) with time O(2kn).Another upper bound of the time-spa
e tradeo� for the reversible pebbling on
hain topology 
an be obtained by using Bennett's pebbling strategy introdu
edin [1℄. Sin
e this strategy pebbles 
hain of length kn with n(k � 1) + 1 pebblesin time (2k � 1)n, it yields time-spa
e tradeo� in the form: spa
e O(k�1lg k lgn)versus time 
(n lg(2k�1)lg k ).4 Binary Tree TopologyIn this se
tion we will dis
uss spa
e 
omplexity of reversible pebble game on
omplete binary trees. A 
omplete binary tree of height 1 (denoted as Bt(1)) isa graph 
ontaining one vertex and no edges. A 
omplete binary tree of heighth > 1 (denoted as Bt(h)) 
onsists of a root vertex and two subtrees, that are
omplete binary trees of height h� 1.This topology represents a 
lass of problems, where the result 
an be 
om-puted from two di�erent subproblems.We denote the root vertex of Bt(h) as R(Bt(h)), the left subtree of Bt(h) asLt(Bt(h)) and the right subtree of Bt(h) as Rt(Bt(h)).As mentioned in se
tion 2, we denote the minimal number of pebbles neededto perform a 
omplete 
omputation on Bt(h) as Smin(h). In the sequel we also
onsider the minimal number of pebbles needed to perform a 
omputation fromthe empty 
on�guration to a 
on�guration, where only the root is pebbled.De�nition 7. Let C be a 
omputation of length l on Bt(h). Let C(1) = E(Bt(h))and C(l) = Put(E(Bt(h));R(Bt(h)); 1). Then C is 
alled a semi
omplete 
ompu-tation.The minimal number of pebbles needed to perform a semi
omplete 
ompu-tation on Bt(h) (e.g. minfS(C)g, where C is a semi
omplete 
omputation) willbe denoted as S0min(h).We will use the following inequalities between Smin(h) and S0min(h). Theirproofs are not diÆ
ult and are left out due to spa
e reasons.



Lemma 3. Smin(h) + 1 � S0min(h) � Smin(h)Lemma 4. S0min(h+ 1) = Smin(h) + 24.1 Tight Spa
e Bound for Binary Tree TopologyFrom the previous lemmas follows, that S0min(h) equals to h plus the numberof su
h i < h, that S0min(i) = Smin(i). In the following 
onsiderations we use afun
tion S0�1min. The value h = S0�1min(p) denotes the maximal height of binary treethat 
an be pebbled by a semi
omplete 
omputation, that uses at most h + ppebbles. Formally, S0�1min(p) = maxfhj9C 2 S
h^S(C) = h+pg, where S
h is theset of all semi
omplete 
omputations on Bt(h). From the de�nition of S0�1min(p)follows, that S0min(h) = h+ (S0�1min)�1(h).Now we prove the upper (lower) bound of S0�1min(p). From that follows lower(upper) bound of S0min(h) and therefore also lower (upper) bound of Smin(h)respe
tively.Lemma 5. Let h0 = S0�1min(p), h = S0�1min(p + 1). Then the following inequalityholds: h� h0 � 1 � 2h0+p+1 � 1Proof. A 
on�guration on a binary tree is 
alled opened, if there exists a pathfrom the root to some leaf of the tree, su
h that no pebble is laid on this path.Otherwise, the 
on�guration is 
alled 
losed.From the assumption h = S0�1min(p+ 1) follows, that there exists some semi-
omplete 
omputation C of length l on Bt(h), su
h that S(C) = h+ p+ 1. Let ibe the �rst 
on�guration of C, su
h that C(j)(R(Bt(h))) = 1 for any j � i (e.g.i = minfij(8j � i) C(j)(R(Bt(h))) = 1g ).Be
ause C is a reversible 
omputation, C(i)(R(Lt(Bt(h)))) = C(i)(R(Rt(Bt(h)))) = 1. Therefore Put(C(i);R(Bt(h)); 0) is a 
losed 
on�guration. Be
ausePut(C(l);R(Bt(h)); 0) = E(Bt(h)), this 
on�guration is opened. Let j be theminimal number su
h that j � i and Put(C(j);R(Bt(h)); 0) is opened.Be
ause Put(C(j);R(Bt(h)); 0) is opened and Put(C(j � 1);R(Bt(h)); 0) is
losed and C is a reversible 
omputation, there exists exa
tly one path in C(j)from the root to a leaf, su
h that no pebble is laid on it. Without loss of general-ity we 
an assume, that this path is R(Bt(h));R(Rt(Bt(h)));R(Rt2(Bt(h))); : : : ;R(Rth�1(Bt(h))).Now we prove, that for ea
h k, h � k � h0 + 2 and for ea
h p, i � p < j, itholds that #(C(p)(Lt(Rth�k(Bt(h))))) > 0.Assume, that this 
onje
ture does not hold. Let k be the maximal num-ber su
h that violates this 
onje
ture. Let p be the maximal number su
h thati � p < j and #(C(p)(Lt(Rth�k(Bt(h))))) = 0_#(C(p)(Rt(Rth�k(Bt(h))))) = 0.Without loss of generality, let #(C(p)(Lt(Rth�k(Bt(h))))) = 0. Be
ause Put(C(p);R(Bt(h)); 0) is 
losed, in a 
on�guration C(p) is pebbled at least one vertex fromR(Rt(Bt(h))), R(Rt2(Bt(h))), . . . , R(Rth�k(Bt(h))). In a 
on�guration C(j) areall these verti
es unpebbled. Let q be the minimal number su
h that q > p and all



these verti
es are unpebbled in C(q). Be
ause C is a reversible 
omputation, C(q�1)(R(Rth�k(Bt(h)))) = 1, C(q)(R(Rth�k(Bt(h)))) = 0 and C(q)(R(Lt(Rth�k(Bt(h))))) = 1. Now 
onsider the 
omputation C0 = Rst(C; p; q;Lt(Rth�k(Bt(h)))).Computation C0 + Rev(C0) is a 
omplete 
omputation on Lt(Rth�k(Bt(h))))(this graph is isomorphi
 to Bt(k � 1)). Spa
e of this 
omputation is at mostS(C0 +Rev(C0)) � S(C)� (3 + h� k) = k+ p� 2. From our assumption follows,that spa
e for any semi
omplete 
omputation on Bt(k�1) is at least k+p. FromLemma 3 follows, that the spa
e for any 
omplete 
omputation on Bt(k � 1) isat least k + p� 1, what is a 
ontradi
tion.Now 
onsider C2 = Rst(C; i; j;R(Rt(Bt(h))) [ R(Rt2(Bt(h))) [ : : : [ R(Rth�h0�1(Bt(h)))). It is a 
omputation on a graph isomorphi
 to Ch(h�h0�1).In the �rst 
on�guration of C2, vertex R(Rt(Bt(h))) is pebbled. In the last 
on-�guration of C2, no vertex is pebbled. Therefore Rev(C2) + C2 is a 
omplete
omputation on a graph isomorphi
 to Ch(h� h0 � 1).Be
ause for ea
h k, h � k � h0 + 2 and for ea
h p, i � p � j, it holds that#(C(p)(Lt(Rth�k(Bt(h))))) > 0 and C(p)(R(Bt(h))) = 1, we 
an estimate upperbound for spa
e of C2: S(C2) � (h+p+1)�(1+h�h0�1) = h0+p+1. Using spa
eupper bound for 
hain topology (Theorem 1) we have h� h0 � 1 � 2h0+p+1 � 1.utLemma 6. Let h0 = S0�1min(p), h = S0�1min(p + 1). Then the following inequalityholds: h� h0 � 1 � 2h0+p�2 � 1Proof. We prove by indu
tion, that for ea
h k 2 fh0 + 1 : : : h0 + 2h0+p�2g thereexists a semi
omplete 
omputation C on Bt(k) su
h that S(C) � k+ p+1. Thisimplies, that h � h0 + 2h0+p�2.The base 
ase is k = h0 + 1. By assumption there exists a semi
omplete
omputation C on Bt(h0) su
h that S(C) = h0+ p. After applying C to Lt(Bt(k))and Rt(Bt(k)), pebbling R(Bt(k)) and applying reversed C to Lt(Bt(k)) andRt(Bt(k)) we obtain a semi
omplete 
omputation on Bt(k) that uses at mosth0 + p+ 2 = k + p+ 1 pebbles.Now assume that the indu
tion hypothesis holds for ea
h i 2 fh0+1 : : : k�1g.We 
onstru
t a 
omputation C on Bt(k) as follows: At �rst we apply semi-
omplete 
omputations on Lt(Bt(k)), Lt(Rt(Bt(k))), . . . , Lt(Rtk�h0�2(Bt(k))),Lt(Rtk�h0�1(Bt(k))), Rtk�h0(Bt(k)) sequentially. By indu
tion hypothesis, thespa
e of a semi
omplete 
omputation on Lt(Rti(Bt(k))) is less than or equal to(k� i�1)+p+1 for i � k�h0�2. By assumption, the spa
e of a semi
omplete
omputation on Lt(Rtk�h0�1(Bt(k))) and Rt(Rtk�h0�1(Bt(k))) is less than orequal to h0 + p. Therefore spa
e of this part of C is less than or equal to k + p.In the se
ond part of C, we perform a spa
e optimal 
omplete 
omputation ona 
hain 
onsisting of verti
es R(Bt(k)), R(Rt(Bt(k))), . . . , R(Rtk�h0�1(Bt(k))).Due to the Theorem 1, spa
e of this part is less than or equal to dlog2(k�h0+1)e+k�h0+1. Be
ause k � h0+2h0+p�2, it holds dlog2(k�h0+1)e+k�h0+1 � k+p.The third part of the 
omputation C is the reversed �rst part.



Also, C is a 
omplete 
omputation on Bt(k) and S(C) � k + p. Hen
e,Smin(k) � k + p. Using Lemma 3, S0min(k) � k + p + 1. Therefore there ex-ists a semi
omplete 
omputation on Bt(k) with spa
e less than k + p+ 1. utLemma 7. For p � 2 it holds that 2S0�1min(p) � S0�1min(p+ 1) � 24 S0�1min(p).Proof. Let h0 = S0�1min(p), h = S0�1min(p + 1). From Lemma 5 follows h � h0 �2h0+p+1, what is equivalent to S0�1min(p+ 1) � 2S0�1min(p)+p+1 + S0�1min(p).From the de�nition of S0�1min and from Lemma 3 and Lemma 4 trivially follows,that S0�1min(p) � 2p. Therefore 2S0�1min(p)+p+1+S0�1min(p) � 24 S0�1min(p) for p � 1. Also,the se
ond inequality holds.From Lemma 6 follows h�h0 � 2h0+p�2, what is equivalent to S0�1min(p+1) �2S0�1min(p)+p�2+S0�1min(p). Therefore for p � 2 it holds S0�1min(p+1) � 2S0�1min(p). utTheorem 4. Smin(h) = h+�(lg�(h))Proof. From the previous lemma follows, that S0�1min(p) = O( pz }| {1616���16) and thatS0�1min(p) = 
( pz}|{22���2). Be
ause S0min(h) = h+(S0�1min)�1(h), it holds that S0min(h) =h+
(lg�(h)) and S0min(h) = h+O(lg�(h)). Therefore S0min(h) = h+�(lg�(h)).From Lemma 3 follows, that Smin(h) = h+�(lg�(h)). ut4.2 Extension to Butter
iesButter
y graphs 
reate important 
lass of graphs to study, as they share su-per
on
entrator property and the butter
ies form inherent stru
ture of someimportant problems in numeri
al 
omputations, as dis
rete FFT.A butter
y graph of order d is a graph G = (V;E), where V = f1 : : : dg �f0 : : : 2d�1� 1g and E = f((i; j); (i+1; j xor 2i�1))j1 � i < d; 0 � j � 2d�1� 1g.This graph 
an be de
omposed into 2d�1 
omplete binary trees of height d. Theroot of i-th tree is vertex (1; i) and this tree 
ontains all verti
es, that 
an berea
hed from the root.The de
omposition property implies, that the minimal spa
e 
omplexity ofa 
omplete 
omputation on butter
y graph of order d 
annot be lower than theminimal spa
e 
omplexity on a 
omplete binary tree of height d (otherwise we
an restri
t a 
omplete 
omputation on butter
y to any binary tree to obtain a
ontradi
tion).On the other side, by sequentially applying 
omplete 
omputations to allbinary trees obtained by de
omposition of the butter
y graph, we obtain a 
om-plete 
omputation on it. Also, we 
an 
onstru
t a 
omplete 
omputation on abutter
y graph of order d with spa
e 
omplexity equal to minimal spa
e 
om-plexity of the binary tree of height d. Therefore the minimal spa
e 
omplexity ofthe butter
y topology equals to the minimal spa
e 
omplexity of the binary treetopology (e.g. the minimal spa
e for a butter
y graph of order d is d+�(lg�(d))).



5 Con
lusionIn this paper we have analysed an abstra
t model for reversible 
omputations { areversible pebble game. We have des
ribed a te
hnique for proving time and spa
e
omplexity bounds for this game and presented a tight optimal spa
e bound fora 
hain topology, upper and partial lower bounds on time of optimal spa
e for a
hain topology, an upper bound on time-spa
e tradeo� for a 
hain topology anda tight optimal spa
e bound for a binary tree topology. These results implies,that reversible 
omputations require more resour
es than standard irreversible
omputations. (For a spa
e 
omplexity of a 
hain topology it is �(1) vs. �(lg n)and for a spa
e 
omplexity of a binary tree topology it is h + �(log�(h)) vs.h+�(1).)For further resear
h, it would be interesting to examine the time 
omplexityof the reversible pebble game for tree and butter
y topology and to 
onsiderother important topologies, for example pyramids.A
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