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Abstract. In the context of quantum computing, reversible computa-
tions play an important role. In this paper the model of the reversible
pebble game introduced by Bennett is considered. Reversible pebble
game is an abstraction of a reversible computation, that allows to ex-
amine the space and time complexity for various classes of problems. We
present a technique for proving lower and upper bounds on time and
space complexity. Using this technique we show a partial lower bound
on time for optimal space (time for optimal space is not o(nlgn)) and
a time-space tradeoff (space O(%/n) for time 2¥n) for a chain of length
n. Further, we show a tight optimal space bound (h + ©(lg* h)) for a bi-
nary tree of height h and we discuss space complexity for a butterfly. By
these results we give an evidence, that for reversible computations more
resources are needed with respect to standard irreversible computations.

1 Introduction

Standard pebble game was introduced as a graph-theoretic model, that enables
to analyse time-space complexity of deterministic computations. In this model,
values to be computed are represented by vertices of a directed acyclic graph.
An edge from a vertex a to a vertex b represents the fact, that for computing
the value a, the value b has to be already known. Computation is modelled by
laying and removing pebbles on/from the vertices. Pebbles represent the memory
locations. A pebble laying on a certain vertex represents the fact that the value
of this vertex is already computed and stored in the memory.
The importance of the pebble game is in the following two step paradigm:

1. the inherent structure of studied problem forms the class of acyclic graphs;
investigate time-space complexity of pebbling this class of graphs;

2. apply the obtained time-space results to create a time efficient space re-
stricted computation of the original studied problem.

Various modifications of this game were studied in connection with differ-
ent models of computations (e.g. pebble game with black and white pebbles for
nondeterministic computations, two person pebble game for alternation com-
putations, pebble game with red and blue pebbles for input-output complexity
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analysis, pebble game with labels for database serializability testing, etc., see
7).

In connection with quantum computing, the model of reversible computations
is very interesting. As the basic laws of quantum physics are reversible, also the
quantum computation has to be reversible. That means, that each state of the
computation has to uniquely define both the following and the preceding state
of the computation.

Another motivation to examine the model of reversible computation follows
from the fact, that reversible operations are not known to require any heat
dissipation. With continuing miniaturisation of computing devices, reduction of
the energy dissipation becomes very important. Both these reasons for studying
reversible computations are mentioned in [9], [2], [5] and [4].

A modification of the standard pebble game for modelling reversible compu-
tations is the reversible pebble game. Reversible pebble game enables to analyse
time and space complexity and time-space trade-offs of reversible computations.

In this paper, three basic classes of dags are considered: the chain topology,
the complete binary tree topology and the butterfly topology. These topologies
represent the structure of the most common problems.

It is evident, that minimal space complexity for standard pebble game on
chain topology is O(1), minimal time complexity is O(n) and minimal space and
time complexities can be achieved simultaneously. For reversible pebble game,
in [4] was proved minimal space complexity on the chain topology in the form
O(lgn) and upper bound on time complexity for optimal space complexity in
the form O(n'¢?3). In [1] it was introduced a pebbling strategy, that yields an

upper bound of time-space tradeoff for reversible pebble game on chain in the
form: space O(’fg;k1 lgn) versus time 2(n e ).

We show that optimal time for optimal space complexity cannot be o(nlgn).
Further, we show the upper bound on the time-space tradeoff for reversible
pebble game on chain in the form: space O({/n) versus time 2*n.

Minimal space complexity h + 1 for standard pebble game on a complete
binary tree of height h was proved in [6]. We show a tight space bound for
reversible pebble game on a complete binary tree in the form h + O(lg* h).
These results give an evidence, that more resources are needed for reversible

computation in comparison with irreversible computation.

2 Preliminaries

Reversible Pebble Game is played on directed acyclic graphs. Let G be a dag.
A configuration on G is a set of its vertices covered by pebbles. Let C' be a
configuration, the formula C'(v) = 1 denotes the fact that the vertex v is covered
by a pebble. Analogically, C'(v) = 0 denotes that the vertex v is uncovered. We
denote the number of pebbles used in a configuration C' as #(C). An empty
configuration on G is denoted as E(C'). Empty configuration is a configuration
without pebbles. The rules of Reversible pebble game are the following:



R1 A pebble can be laid on a vertex v if and only if all direct predecessors of
the vertex v are covered by pebbles.

R2 A pebble can be removed from a vertex v if and only if all direct predecessors
of the vertex v are covered by pebbles.

Reversible pebble game differs from standard pebble game in rule R2 — in
standard pebble game, pebbles can be removed from any vertex at any time.

An ordered pair of configurations on dag G, such that the second one follows
from the first one according to these rules, is called a transition.

For our purposes, a transition can be also a pair of two identical configura-
tions. A nontrivial transition is a transition not formed by identical configura-
tions.

Important property of a transition in a reversible pebble game is symmetry.
From the rules of the game follows, that if (C, Cs) forms a transition, then also
(Cy, Cy) forms a transition.

A computation on graph G is a sequence of configurations on G such that
each successive pair forms a transition. Let C be a computation, C(i) denotes
the i-th configuration in the computation C. A computation C is a complete
computation, if and only if the first and the last configurations of C are empty
(e.g. #(C(1)) = #(C(n)) = 0, where n is the length of the computation C) and
for each vertex v there exists a configuration C' in C, such that v is covered in
C.

We shall be interested in space and time complexities of a computation C.
Space of a computation C (denoted as S(C)) is the number of pebbles needed to
perform the computation — that is the maximum number of pebbles used over all
configurations of C. Time of a computation C (denoted as T(C)) is the number
of nontrivial transitions in C.

The minimal space of the reversible pebble game on the dag G (denoted as
Smin(G)) is the minimum of S(C) over all complete computations C on G. The
time T(G, s) of the reversible pebble game on the dag G with at most s pebbles is
the minimum of T(C) over all complete computations C on G such that S(C) < s.

Let G be a class of dags. Then the minimal space function Smin(n) of a class
G is the maximum of Syin(G) over all dags in the subclass G,,. The time function
T(n,s) is the maximum of T(G, s) over all dags G in the subclass G,.

2.1 Operations on Computations

For proving upper and lower bounds on time and space complexities of the re-
versible pebble game, it is useful to manipulate formally with reversible compu-
tations. We will use an algebraic way to describe computations. An advantage of
this approach is in high precision of the description. In this section we introduce
some operations for constructing and modifying computations.

For changing state of a particular vertex in a configuration, we use the oper-
ation Put.

Definition 1. Let G = (V, E) be a dag, C be a configuration on G. Let v € V
and h € {0,1}. Then Put(C,v,h) is a configuration on G defined as follows:



— Put(C,v,h)(u) = C(u), if u € V and u # v;
— Put(C,v,h)(u) =h, ifu €V and u = v.

An important property of reversible computations is the following one: Let G
be a dag, G’ be a subgraph of G and C be a computation on G. If we remove all
vertices not in G’ from all configurations of C, we obtain a reversible computation
on G'. The correctness of such construction is clear — we cannot violate any
rule of reversible pebble game by removing a vertex from all configurations of
a computation. Another important fact is, that removing some configurations
from the beginning and the end of a reversible computation does not violate a
property of a reversible computation, too.

Also, we can define an operator for a “restriction” of a computation:

Definition 2. Let G = (V,E) be a dag, V' CV. Let C be a computation of the
length n on G. A Restriction C' = Rst(C,4,5, V') of the computation C to an
interval {i...j} (1 <i<j<n)and to a subgraph G' = (V',EN (V' x V")) is
a computation C' of the length j —i 4+ 1 on G' defined as follows:

(Vke{l...j—i+1}) (Yo e V)C'(k)(v) = C(i + k — 1)(v)

We use a notation Rst(C,i,j) when no vertices should be removed (e.g. Rst(C,1,
Jj) =Rst(C,i,5,V) for the graph G = (V, E)).

From the symmetry of the rules of the reversible pebble game follows, that
reversing a reversible computation does not violate the reversible computation
property. We can therefore define an operator Rev.

Definition 3. Let C be a computation on G of the length n. Then the reverse of
the computation C (denoted as Rev(C)) is a computation on G defined as follows:

(Vie{l...n})Rev(C)(i) =C(n+1—1)
Now we introduce operations, that are inverse to restriction in some sense.

Definition 4. Let C; and Cy are computations on a dag G, let C1 and C have
length ny and no respectively. Let C1(ny) and C2(1) form a transition. Then the
join of computations C; and Cy (denoted as C1 + C2) is a computation on G of
length ny + no defined as follows:

- (Cl +Cg)(l) = Cl(Z), Zfl S nq
— (C1 +CQ)(7,) = CQ(’L — Tbl), Zf’L > nq

It is clear, that this definition is correct. Configurations (C1 + C3)(n1) and
(C1 + C3)(ny + 1) form a transition by assumption. All other successive pairs of
configurations form transitions, because C; and Cy are computations.

Let C be a configuration on a dag G. Then we can look at a configuration
C also as at a computation of length 1, so that C(1) = C. Therefore we can also
join a computation with a configuration and vice versa.

The join of two computations is an inverse operation to restriction by re-
moving configurations. Now we define an inverse operation to the restriction
performed by removing vertices.



Definition 5. Let G = (V,E) be a dag, Vi CV, Vo CV, Vi N Vs = 0. Let C
be a configuration on the graph (Vo, EN (Va x V3)). Let {(w,v)lv € Vi Aw €
VoAC(w) = 0A(w,v) € E} = 0. Let C be a computation of length n on the graph
(Vi, EN(Vy xV1)). The computation C merged with the configuration C' (denoted
as C - C) is a computation on the graph (Vi UVy, EN (V1 UV3) x (V1 UW,))) of
length n defined as follows:

= (C-O)(i)(v)
= (C-O)(i)(v)

This definition is clearly correct. By adding the same configuration to all
configurations of some computation C, it is only one way to violate the rules
of the reversible pebble game: if some of the added direct predecessors of a
vertex, which the pebble is laid on or removed from, are not pebbled. But this
is prohibited by the assumption of definition.

Any computation on a graph G can be applied on any graph G' that is
isomorphic with G. The application of a computation can be defined as follows:

C(i)(v), ifven;
Cv), ifveV,

Definition 6. Let C be a computation of length n on a dag G and G' be a
dag isomorphic with G. Let ¢ is the isomorphism between G' and G. Then a
computation C applied to the graph G' (denoted as C|G') is a computation on
G' of length n such that (C|G")(i)(v) = C(i)(p(v)) for all 1 < i < n and for all
vertices v of G'.

3 Chain Topology

The simplest topology for a pebble game is a chain. Chain with n vertices
(denoted as Ch(n)) is a dag Ch(n) = (V,E), where V = {1...n} and E =
{(i — 1,7)|i € {2...n}}. This topology is an abstraction of a simple straightfor-
ward computation, where the result of step n + 1 can be computed only from
the result of step n.

In this section we discuss optimal space complexity for a reversible pebble
game on the chain topology — the minimal space function Spin(n) for Ch, where
the subclass Ch,, contains only a chain Ch(n). We will discuss also partial lower
and upper bounds for optimal time and space complexities — the time func-
tion T(n, Smin(n)) and the upper bound of the time-space tradeoff for the chain
topology.

3.1 Optimal Space for the Chain Topology

For determining space complexity of the reversible pebble game on the chain
topology we will examine the maximum length of the chain, that can be peb-
bled by p pebbles. We denote this length as S~*(p). It holds, that S~1(p) =
max{m|(IC € Ccp(m)) S(C) < p}, where Cep(yy) is the set of all computations
on the graph Ch(m).



Reversible pebble game on the chain topology was studied in connection
with reversible simulation of irreversible computation. C. H. Bennett suggested
in [1] a pebbling strategy, whose special case has space complexity ©@(lgn). Space
optimality of this algorithm was proved in [5] and [4]. This result is formulated
in following theorem.

Theorem 1. It holds that S~ (p) = 2P —1. Therefore for minimal space function
of chain topology Smin(n) it holds

Smin(n) = O(lgn)

3.2 Optimal Time and Space for the Chain Topology

In this section we present upper and partial lower bounds on time for space
optimal reversible pebble game played on a chain topology.

We will use two auxiliary lemmas. Their proofs are not difficult and are left
out due to space reasons.

Lemma 1. Let C be a complete computation of length | on Ch(n), S(C) =
Smin(n), T(C) = T(n,Smin(n)). Let i = min{i|i € {1...1} AC(i)(n) = 1}. Then
it holds that T(C

T(Rst(C,1,4)) = T(Rst(C,i,1)) = %
Lemma 2. LetC be a complete computation on Ch(S™!(p + 1)) such that S(C) =
p+ 1. It holds that

max{min{j|j € {1...n} AC(E)(j)=1}i € {1...1}} =S (p) +1

Now we prove the upper and partial lower bound on time for space optimal
pebble game:

Theorem 2. T(S™'(p+1),p+1)>2S"(p) +2+2T(S (p),p)

Proof. Let C be a time optimal complete computation on Ch(S™*(p + 1)), such
that S(C) = p+ 1. Let [ be the length of C. Clearly T(C) = T(S™'(p+1),p+1).
We prove, that T(C) > 257 (p) + 2 + 2T(S~!(p), p) holds.

Let n = S7'(p), G1 = ({n + 1},0) and G2 be a graph obtained from Ch(n)
by renaming vertices ton+2...2n+1=S"1(p+1). Let i = min{ili € {1...I} A
C(i)(2n + 1) = 1}. By Lemma 1 it holds T(Rst(C,1,7)) = $T(C). From Lemma
2 follows, that Rst(C,k,k,{1...n +1}) # E(Ch(n)) - E(G1)) for all k and that
there exists j such that Rst(C, 7, j,{1...n+1}) = E(Ch(n))-Put(E(G1),n+1,1).
W.l.o.g. we can assume j < i (otherwise we can replace C by Rev(C)). Let k be a
configuration such that C(k—1)(n+1) = 0 and (Vq)(k < q < 7)C(q)(n+1) = 1).
Clearly C(k —1)(n) = C(k)(n) = 1.

Now consider the computation C; = Rst(C,1,k—1,{1...n})-E(G1)-E(G2) +
Rst(C,k,7,{1...n})-Put(E(G1),n+1,1)-E(G2) +Rst(C,1,7,{n+2...2n+1})-



E(Ch(n)) - Put(E(G1),n + 1,1). Clearly S(C2) < S(C). Also, C» + Rev(Cz) is
complete on Ch(2n + 1) and T(Cy) < T(Rst(C, 1,1)).

It is clear, that T(Rst(C,1,k—1,{1...n})) > n — we cannot pebble n vertices
with time less than n. Rev(Rst(C, k, 4, {1...n}))+Rst(C, k,j, {1...n}) is a space
optimal complete computation on Ch(n), therefore T(Rst(C,k,7,{1...n})) >
%T(n Smin(n)) = %T(S Y(p), p). Analogically, T(Rst(C, 1,i,{n+2...2n+1})) >

ET(n, Suin()) = LT(S™ (p), ).

From these 1nequaht1es follows, that T(Rst(C,1,i)) > n+1+21T(n, Smin(n))-

Therefore T(C) > 2n + 2 + 2T(n, Smin(n)) = 25 (p) + 2+ 2T(S *(p),p). O

Corollary 1. T(n,Smin(n)) = O(n'°823), T(n,Smin(n)) # o(nlgn),

Proof. The upper bound was presented in [4]. By solving recurrent inequality
proved in preceding theorem, we obtain that T'(n,Smin(n)) = 2(nlgn) for n =
2P — 1. Since this function is a restriction of T'(n, Smin(n)) for integer n, function
T'(n,Smin(n)) cannot be o(nlgn). a

3.3 Upper Bound on Time-Space Tradeoff for Chain Topology

In the previous section it was analysed time complexity of reversible pebbling
for space optimal computations. Now we discuss the time complexity for com-
putations, that are not space optimal.

It is obvious, that for any complete computation C on C'h(n) it holds T(C) >
2n, because each vertex has to be at least one time pebbled and at least one
time unpebbled. It is also easy to see, that space of such computation is exactly
n.

Now we will analyse space complexity of complete computations on Ch(n)
that are running in time at most ¢-n. Let S7' (¢, k) = max{n|3C € Cep(n) S(C) <
EAT(C) < en}, where Cepy) is the set of all complete computations on Ch(n).

Theorem 3. For a fived k, it holds S™1(2%,p) = 2(p").

Proof. We prove a statement S~ (2% p) > ¢(k)p* by induction on k and p. Let
¢(1) = 1. The base case S™1(2!,p) > p holds trivially. (It is easy to make a
complete computation C on Ch(p) satisfying S(C) = p and T(C) = 2p.)

Assume by the induction hypothesis that it holds (V&' < k)(Vp')S™' (2%, p') >
c(k')p’k’ and (Vp' < p)S™1(2*,p") > c(k)p'*. We prove, that S~ (2%, p) > c(k)p*
holds.

Let C; be a complete computation on Ch(S™1(2¥~1, p—1)), S(C;) < p—1,
T(Cy) <2*-1S71(2¥~1 p—1). Denote the length of C; by ;. Clearly there exists
m such that C; (m)(S™H (281, p—1)) = 1.

Let Cy be a complete computation on Ch(S™!(2F,p — 1)), S(C2) < p — 1,
T(C) < 281 (25, p — 1).

Let Gi = ({S7'(2F1,p—1) + 1},0). Let G> is a graph obtained from
Ch(S~1(2%,p — 1)) by renaming its vertices to S+ (28~ p—1)+2,...,S71(2F 1,
p—1)+1+S71(2*¥,p—1). Now assume the following computation C3 = Rst(Cy, 1,
m) : E(Gl) : E(GQ) + RSt(Cl, m, ll) . Put(E(Gl), S_l(Qk_l,p— 1) +1, 1) : E(GQ) +



(Ca|Ga) - E(Ch(S1 (281, p — 1)) -Put(E(G4), S~ (2¥ 1, p—1)+1,1) + Rev(Rst(
Ci,m,l1))-Put(E(G1),S71 (2%, p—1)+1,1)-E(Ga) +Rev(Rst(C1, 1,m))-E(Gy)-
().

Clearly Cs3 is a complete computation on Ch(S™1(28~1 p — 1) + 1 + S~1(2%,
p — 1)) satisfying S(C3) < p and T(C3) < 2T(C1) +2 + T(Cy) < 2kS~1(2F 1 p —
1) +2+2kS=1(2% p—1) < 2K(S71 (21, p— 1) + 1 + S71(2*,p — 1)). Therefore
ST'(2%,p) > ST p— 1)+ 145712k, p—1).

By induction hypothesis we have S~ (2% p) > c¢(k — 1)(p — 1)~ 4+ ¢(k)(p —
1)*. For a suitable value of c¢(k) (we can choose c(k) = %) it holds that
c(k —1)(p— 1)1 +e(k)(p — 1)* > c(k)p*. Also there exists c(k) such that
ST1(2"%,p) > c(k)p*. O

Corollary 2. Let k be fized. Then O(¥/n) pebbles are sufficient for a complete
computation on Ch(n) with time O(2kn).

Another upper bound of the time-space tradeoff for the reversible pebbling on
chain topology can be obtained by using Bennett’s pebbling strategy introduced
in [1]. Since this strategy pebbles chain of length £™ with n(k — 1) + 1 pebbles
in time (2k — 1), it yields time-space tradeoff in the form: space O(’fg;k1 lgn)

. 1g(2k—1)
versus time 2(n~ 5% ).

4 Binary Tree Topology

In this section we will discuss space complexity of reversible pebble game on
complete binary trees. A complete binary tree of height 1 (denoted as Bt(1)) is
a graph containing one vertex and no edges. A complete binary tree of height
h > 1 (denoted as Bt(h)) consists of a root vertex and two subtrees, that are
complete binary trees of height h — 1.

This topology represents a class of problems, where the result can be com-
puted from two different subproblems.

We denote the root vertex of Bt(h) as R(Bt(h)), the left subtree of Bt(h) as
Lt(Bt(h)) and the right subtree of Bt(h) as Rt(Bt(h)).

As mentioned in section 2, we denote the minimal number of pebbles needed
to perform a complete computation on Bt(h) as Smin(h). In the sequel we also
consider the minimal number of pebbles needed to perform a computation from
the empty configuration to a configuration, where only the root is pebbled.

Definition 7. Let C be a computation of length | on Bt(h). Let C(1) = E(Bt(h))
and C(I) = Put(E(Bt(h)), R(Bt(h)),1). Then C is called a semicomplete compu-
tation.

The minimal number of pebbles needed to perform a semicomplete compu-
tation on Bt(h) (e.g. min{S(C)}, where C is a semicomplete computation) will
be denoted as S ;, (h).

We will use the following inequalities between Spin(h) and Si; (h). Their
proofs are not difficult and are left out due to space reasons.



Lemma 3. Sin(h) +1>S!

min

(h) > Smin (h)

Lemma 4. S, (h+1) = Smin(h) + 2

min

4.1 Tight Space Bound for Binary Tree Topology

From the previous lemmas follows, that S . (h) equals to h plus the number
of such i < h, that S ; (i) = Smm( ). In the following considerations we use a

function S’ mlln The value h = '} (p) denotes the maximal height of binary tree

min
that can be pebbled by a semicomplete computation, that uses at most h + p

pebbles. Formally, S’ (p) = max{h|3C € ScyAS(C) = h+p}, where Scy, is the
set of all semicomplete computations on Bt(h). From the definition of ', (p)
follows, that S/ ;. (h) = h + (S'iy) 1 (h).

Now we prove the upper (lower) bound of S\ (p). From that follows lower
(upper) bound of S.; (h) and therefore also lower (upper) bound of Sy (h)

respectively.

min

Lemma 5. Let h' = S}

mm( ) h - SI ;
holds:

min (

+ 1). Then the following inequality
h—h —1<2h+rtl _q

Proof. A configuration on a binary tree is called opened, if there exists a path
from the root to some leaf of the tree, such that no pebble is laid on this path.
Otherwise, the configuration is called closed.

From the assumption h = S’ mlln( + 1) follows, that there exists some semi-
complete computation C of length [ on Bt(h), such that S(C) =h+p+ 1. Let ¢
be the first configuration of C, such that C(j)(R(Bt(h))) = 1 for any j > i (e.g.
i = min{i|(vj > i) C())(R(Bt())) = 1} ).

Because C is a reversible computation, C(i)(R(Lt(Bt(h)))) = C(7) (R(Rt(Bt(
h)))) = 1. Therefore Put(C(i), R(Bt(h)),0) is a closed configuration. Because
Put(C(1),R(Bt(h)),0) = E(Bt(h)), this configuration is opened. Let j be the
minimal number such that j > i and Put(C(5), R(Bt(h)),0) is opened.

Because Put(C(j),R(Bt(h)),0) is opened and Put(C(j — 1),R(Bt(h)),0) is
closed and C is a reversible computation, there exists exactly one path in C(j)
from the root to a leaf, such that no pebble is laid on it. Without loss of general-
ity we can assume, that this path is R(Bt(h)), R(Rt(Bt(h))), R(Rt*(Bt(h))), .. .,
R(Rt" (Bt (h))).

Now we prove, that for each k, h > k > h' + 2 and for each p, i < p < j, it
holds that #(C(p)(Lt(Rt"*(Bt(h))))) > 0.

Assume, that this conjecture does not hold. Let k& be the maximal num-
ber such that violates this conjecture. Let p be the maximal number such that
i <p < jand #(C(p)(Lt(Re"*(Bt(h))))) = OV#(C(p)(Rt(Rt"*(Bt(h))))) = 0.
Without loss of generality, let #(C(p) (Lt(Rt"~*(Bt(h))))) = 0. Because Put(C(p),
R(Bt(h)),0) is closed, in a configuration C(p) is pebbled at least one vertex from
R(Rt(Bt(h))), R(Rt?(Bt(h))), ..., R(Rt"*(Bt(h))). In a configuration C(j) are
all these vertices unpebbled. Let ¢ be the minimal number such that ¢ > p and all



these vertices are unpebbled in C(g). Because C is a reversible computation, C(q—
DR(RE"(Bt(h)))) = 1, C(q)(R(RE""(Bt(R)))) = 0 and C(q)(R(Lt(Rt""(
Bt(h))))) = 1. Now consider the computation C’' = Rst(C, p, ¢, Lt(Rt" ¥ (Bt(R)))).
Computation C' + Rev(C’) is a complete computation on Lt(Rt"*(Bt(h))))
(this graph is isomorphic to Bt(k — 1)). Space of this computation is at most
S(C'"+Rev(C")) <S(C) — (3+ h—k) = k+ p— 2. From our assumption follows,
that space for any semicomplete computation on Bt(k—1) is at least k+ p. From
Lemma 3 follows, that the space for any complete computation on Bt(k — 1) is
at least k + p — 1, what is a contradiction.

Now consider C» = Rst(C,i,J, R(Rt(Bt(h))) U R(Rt*(Bt(h))) U ... U R(
Rt" "1 (Bt(h)))). It is a computation on a graph isomorphic to Ch(h—h' —1).
In the first configuration of Ca, vertex R(Rt(Bt(h))) is pebbled. In the last con-
figuration of Cs, no vertex is pebbled. Therefore Rev(Cs) + C2 is a complete
computation on a graph isomorphic to Ch(h — h' — 1).

Because for each k, h > k > h' + 2 and for each p, i < p < 7, it holds that
#(C(p)(Lt(Rt"*(Bt(h))))) > 0 and C(p)(R(Bt(h))) = 1, we can estimate upper
bound for space of C2: S(Cz) < (h+p+1)—(1+h—h'—1) = b’ +p+1. Using space
upper bound for chain topology (Theorem 1) we have h — h' — 1 < oh'+p+1 _ 1,

a

Lemma 6. Let h' = S’} (p), h = i (p + 1). Then the following inequality
holds:
h—h —1>2h+p=2_

Proof. We prove by induction, that for each k € {h'+1...h' + 2hl+”*2} there
exists a semicomplete computation C on Bt(k) such that S(C) < k+ p+ 1. This
implies, that h > h' + 20" +P=2,

The base case is k = h' + 1. By assumption there exists a semicomplete
computation C on Bt(h') such that S(C) = h' + p. After applying C to Lt(Bt(k))
and Rt(Bt(k)), pebbling R(Bt(k)) and applying reversed C to Lt(Bt(k)) and
Rt(Bt(k)) we obtain a semicomplete computation on Bt(k) that uses at most
h+p+2=Fk+p+1 pebbles.

Now assume that the induction hypothesis holds for each i € {h'+1...k—1}.
We construct a computation C on Bt(k) as follows: At first we apply semi-
complete computations on Lt(Bt(k)), Lt(Rt(Bt(k))), ..., Lt(Rt" ' ~2(Bt(k))),
Lt(Rtkih,*l(Bt(k))), Rt* (Bt(k)) sequentially. By induction hypothesis, the
space of a semicomplete computation on Lt(Rt’(Bt(k))) is less than or equal to
(k—i—1)+p+1fori <k—h'—2. By assumption, the space of a semicomplete
computation on Lt(Rtk_hl_l(Bt(k))) and Rt(Rtk_h’_l(Bt(k))) is less than or
equal to h' + p. Therefore space of this part of C is less than or equal to k + p.

In the second part of C, we perform a space optimal complete computation on
a chain consisting of vertices R(Bt(k)), R(Rt(Bt(k))), ..., R(Rtkfhl*l(Bt(k))).
Due to the Theorem 1, space of this part is less than or equal to [log,(k—h'+1)]+
k—h'+1. Because k < k' +20+P=2 it holds [log,(k—h' +1)]+k—h +1 < k+p.

The third part of the computation C is the reversed first part.



Also, C is a complete computation on Bt(k) and S(C) < k + p. Hence,
Smin(k) < k + p. Using Lemma 3, S|, (k) < k + p + 1. Therefore there ex-
ists a semicomplete computation on Bt(k) with space less than k + p + 1. O

Lemma 7. For p > 2 it holds that 25 min(?) < S'in(p+1) <248 min(P)

Proof. Let k' = S'Z! (p), h = S'Z! (p + 1). From Lemma 5 follows h — h' <

Wi min ) mm S~ (p)+pt1 -1
2 , what is equivalent to S i@+ 1) < 25 min + S Lin(D)-

From the definition of S'_;, i, and from Lemma 3 and Lemma 4 trivially follows,
that S/

ol (p) > 2p. Therefore 25 min P+ 4.8/ 1 (p) < 248"05n(®) for p > 1. Also,

the second inequality holds.
From Lemma 6 follows h— k' > 2" +P~2 what is equivalent to §'_{ (p+1) >
28" min(M+P=2 1 g/~ (1)) Therefore for p > 2 it holds S'—1 (p+1) > 25 . O

Theorem 4. Syin(h) = h+ O(1g"(h))
P

| e
Proof. From the previous lemma follows, that S'_; (p) = O(16!® ) and that
~
Sl (p) = 2(2* 7). Because S’ (h) = h+(S'i,) " (h), it holds that S’ . (h)

h+ 2(1g*(h)) and S, ;,,(h) = h+ O(1g*(h)). Therefore S, (h) = h + O(g* (h)).
From Lemma 3 follows, that Smin(h) = h + ©(Ig*(h)).

o> |l

4.2 Extension to Butterflies

Butterfly graphs create important class of graphs to study, as they share su-
perconcentrator property and the butterflies form inherent structure of some
important problems in numerical computations, as discrete FFT.

A butterfly graph of order d is a graph G = (V, E), where V = {1...d} x
{0...29"' —1} and E = {((i,5), (i + 1,jxor 2:1))|1 <i < d,0 < j <2971 —1}.
This graph can be decomposed into 2?~! complete binary trees of height d. The
root of i-th tree is vertex (1,4) and this tree contains all vertices, that can be
reached from the root.

The decomposition property implies, that the minimal space complexity of
a complete computation on butterfly graph of order d cannot be lower than the
minimal space complexity on a complete binary tree of height d (otherwise we
can restrict a complete computation on butterfly to any binary tree to obtain a
contradiction).

On the other side, by sequentially applying complete computations to all
binary trees obtained by decomposition of the butterfly graph, we obtain a com-
plete computation on it. Also, we can construct a complete computation on a
butterfly graph of order d with space complexity equal to minimal space com-
plexity of the binary tree of height d. Therefore the minimal space complexity of
the butterfly topology equals to the minimal space complexity of the binary tree
topology (e.g. the minimal space for a butterfly graph of order d is d+©O(lg* (d))).



5 Conclusion

In this paper we have analysed an abstract model for reversible computations — a
reversible pebble game. We have described a technique for proving time and space
complexity bounds for this game and presented a tight optimal space bound for
a chain topology, upper and partial lower bounds on time of optimal space for a
chain topology, an upper bound on time-space tradeoff for a chain topology and
a tight optimal space bound for a binary tree topology. These results implies,
that reversible computations require more resources than standard irreversible
computations. (For a space complexity of a chain topology it is ©(1) vs. O(lgn)
and for a space complexity of a binary tree topology it is h + @(log*(h)) vs.
h+0(1).)

For further research, it would be interesting to examine the time complexity
of the reversible pebble game for tree and butterfly topology and to consider
other important topologies, for example pyramids.
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