
Time and Spae Complexity of ReversiblePebbling?Rihard Kr�al'ovi�Department of Computer SieneFaulty of Mathematis, Physis and InformatisComenius University, BratislavaSlovakiaAbstrat. In the ontext of quantum omputing, reversible omputa-tions play an important role. In this paper the model of the reversiblepebble game introdued by Bennett is onsidered. Reversible pebblegame is an abstration of a reversible omputation, that allows to ex-amine the spae and time omplexity for various lasses of problems. Wepresent a tehnique for proving lower and upper bounds on time andspae omplexity. Using this tehnique we show a partial lower boundon time for optimal spae (time for optimal spae is not o(n lg n)) anda time-spae tradeo� (spae O( kpn) for time 2kn) for a hain of lengthn. Further, we show a tight optimal spae bound (h+�(lg� h)) for a bi-nary tree of height h and we disuss spae omplexity for a buttery. Bythese results we give an evidene, that for reversible omputations moreresoures are needed with respet to standard irreversible omputations.1 IntrodutionStandard pebble game was introdued as a graph-theoreti model, that enablesto analyse time-spae omplexity of deterministi omputations. In this model,values to be omputed are represented by verties of a direted ayli graph.An edge from a vertex a to a vertex b represents the fat, that for omputingthe value a, the value b has to be already known. Computation is modelled bylaying and removing pebbles on/from the verties. Pebbles represent the memoryloations. A pebble laying on a ertain vertex represents the fat that the valueof this vertex is already omputed and stored in the memory.The importane of the pebble game is in the following two step paradigm:1. the inherent struture of studied problem forms the lass of ayli graphs;investigate time-spae omplexity of pebbling this lass of graphs;2. apply the obtained time-spae results to reate a time eÆient spae re-strited omputation of the original studied problem.Various modi�ations of this game were studied in onnetion with di�er-ent models of omputations (e.g. pebble game with blak and white pebbles fornondeterministi omputations, two person pebble game for alternation om-putations, pebble game with red and blue pebbles for input-output omplexity? Supported in part by grant from VEGA 1/7155/20.



analysis, pebble game with labels for database serializability testing, et., see[7℄).In onnetion with quantum omputing, the model of reversible omputationsis very interesting. As the basi laws of quantum physis are reversible, also thequantum omputation has to be reversible. That means, that eah state of theomputation has to uniquely de�ne both the following and the preeding stateof the omputation.Another motivation to examine the model of reversible omputation followsfrom the fat, that reversible operations are not known to require any heatdissipation. With ontinuing miniaturisation of omputing devies, redution ofthe energy dissipation beomes very important. Both these reasons for studyingreversible omputations are mentioned in [9℄, [2℄, [5℄ and [4℄.A modi�ation of the standard pebble game for modelling reversible ompu-tations is the reversible pebble game. Reversible pebble game enables to analysetime and spae omplexity and time-spae trade-o�s of reversible omputations.In this paper, three basi lasses of dags are onsidered: the hain topology,the omplete binary tree topology and the buttery topology. These topologiesrepresent the struture of the most ommon problems.It is evident, that minimal spae omplexity for standard pebble game onhain topology is O(1), minimal time omplexity is O(n) and minimal spae andtime omplexities an be ahieved simultaneously. For reversible pebble game,in [4℄ was proved minimal spae omplexity on the hain topology in the formO(lg n) and upper bound on time omplexity for optimal spae omplexity inthe form O(nlg 3). In [1℄ it was introdued a pebbling strategy, that yields anupper bound of time-spae tradeo� for reversible pebble game on hain in theform: spae O(k�1lg k lgn) versus time 
(n lg(2k�1)lg k ).We show that optimal time for optimal spae omplexity annot be o(n lgn).Further, we show the upper bound on the time-spae tradeo� for reversiblepebble game on hain in the form: spae O( kpn) versus time 2kn.Minimal spae omplexity h + 1 for standard pebble game on a ompletebinary tree of height h was proved in [6℄. We show a tight spae bound forreversible pebble game on a omplete binary tree in the form h + �(lg� h).These results give an evidene, that more resoures are needed for reversibleomputation in omparison with irreversible omputation.2 PreliminariesReversible Pebble Game is played on direted ayli graphs. Let G be a dag.A on�guration on G is a set of its verties overed by pebbles. Let C be aon�guration, the formula C(v) = 1 denotes the fat that the vertex v is overedby a pebble. Analogially, C(v) = 0 denotes that the vertex v is unovered. Wedenote the number of pebbles used in a on�guration C as #(C). An emptyon�guration on G is denoted as E(C). Empty on�guration is a on�gurationwithout pebbles. The rules of Reversible pebble game are the following:



R1 A pebble an be laid on a vertex v if and only if all diret predeessors ofthe vertex v are overed by pebbles.R2 A pebble an be removed from a vertex v if and only if all diret predeessorsof the vertex v are overed by pebbles.Reversible pebble game di�ers from standard pebble game in rule R2 { instandard pebble game, pebbles an be removed from any vertex at any time.An ordered pair of on�gurations on dag G, suh that the seond one followsfrom the �rst one aording to these rules, is alled a transition.For our purposes, a transition an be also a pair of two idential on�gura-tions. A nontrivial transition is a transition not formed by idential on�gura-tions.Important property of a transition in a reversible pebble game is symmetry.From the rules of the game follows, that if (C1; C2) forms a transition, then also(C2; C1) forms a transition.A omputation on graph G is a sequene of on�gurations on G suh thateah suessive pair forms a transition. Let C be a omputation, C(i) denotesthe i-th on�guration in the omputation C. A omputation C is a ompleteomputation, if and only if the �rst and the last on�gurations of C are empty(e.g. #(C(1)) = #(C(n)) = 0, where n is the length of the omputation C) andfor eah vertex v there exists a on�guration C in C, suh that v is overed inC. We shall be interested in spae and time omplexities of a omputation C.Spae of a omputation C (denoted as S(C)) is the number of pebbles needed toperform the omputation { that is the maximum number of pebbles used over allon�gurations of C. Time of a omputation C (denoted as T(C)) is the numberof nontrivial transitions in C.The minimal spae of the reversible pebble game on the dag G (denoted asSmin(G)) is the minimum of S(C) over all omplete omputations C on G. Thetime T(G; s) of the reversible pebble game on the dag G with at most s pebbles isthe minimum of T(C) over all omplete omputations C on G suh that S(C) � s.Let G be a lass of dags. Then the minimal spae funtion Smin(n) of a lassG is the maximum of Smin(G) over all dags in the sublass Gn. The time funtionT(n; s) is the maximum of T(G; s) over all dags G in the sublass Gn.2.1 Operations on ComputationsFor proving upper and lower bounds on time and spae omplexities of the re-versible pebble game, it is useful to manipulate formally with reversible ompu-tations. We will use an algebrai way to desribe omputations. An advantage ofthis approah is in high preision of the desription. In this setion we introduesome operations for onstruting and modifying omputations.For hanging state of a partiular vertex in a on�guration, we use the oper-ation Put.De�nition 1. Let G = (V;E) be a dag, C be a on�guration on G. Let v 2 Vand h 2 f0; 1g. Then Put(C; v; h) is a on�guration on G de�ned as follows:



{ Put(C; v; h)(u) = C(u), if u 2 V and u 6= v;{ Put(C; v; h)(u) = h, if u 2 V and u = v.An important property of reversible omputations is the following one: Let Gbe a dag, G0 be a subgraph of G and C be a omputation on G. If we remove allverties not in G0 from all on�gurations of C, we obtain a reversible omputationon G0. The orretness of suh onstrution is lear { we annot violate anyrule of reversible pebble game by removing a vertex from all on�gurations ofa omputation. Another important fat is, that removing some on�gurationsfrom the beginning and the end of a reversible omputation does not violate aproperty of a reversible omputation, too.Also, we an de�ne an operator for a \restrition" of a omputation:De�nition 2. Let G = (V;E) be a dag, V 0 � V . Let C be a omputation of thelength n on G. A Restrition C0 = Rst(C; i; j; V 0) of the omputation C to aninterval fi : : : jg (1 � i � j � n) and to a subgraph G0 = (V 0; E \ (V 0 � V 0)) isa omputation C0 of the length j � i+ 1 on G0 de�ned as follows:(8k 2 f1 : : : j � i+ 1g)(8v 2 V 0)C0(k)(v) = C(i+ k � 1)(v)We use a notation Rst(C; i; j) when no verties should be removed (e.g. Rst(C; i;j) = Rst(C; i; j; V ) for the graph G = (V;E)).From the symmetry of the rules of the reversible pebble game follows, thatreversing a reversible omputation does not violate the reversible omputationproperty. We an therefore de�ne an operator Rev.De�nition 3. Let C be a omputation on G of the length n. Then the reverse ofthe omputation C (denoted as Rev(C)) is a omputation on G de�ned as follows:(8i 2 f1 : : : ng) Rev(C)(i) = C(n+ 1� i)Now we introdue operations, that are inverse to restrition in some sense.De�nition 4. Let C1 and C2 are omputations on a dag G, let C1 and C2 havelength n1 and n2 respetively. Let C1(n1) and C2(1) form a transition. Then thejoin of omputations C1 and C2 (denoted as C1 + C2) is a omputation on G oflength n1 + n2 de�ned as follows:{ (C1 + C2)(i) = C1(i), if i � n1{ (C1 + C2)(i) = C2(i� n1), if i > n1It is lear, that this de�nition is orret. Con�gurations (C1 + C2)(n1) and(C1 + C2)(n1 + 1) form a transition by assumption. All other suessive pairs ofon�gurations form transitions, beause C1 and C2 are omputations.Let C be a on�guration on a dag G. Then we an look at a on�gurationC also as at a omputation of length 1, so that C(1) = C. Therefore we an alsojoin a omputation with a on�guration and vie versa.The join of two omputations is an inverse operation to restrition by re-moving on�gurations. Now we de�ne an inverse operation to the restritionperformed by removing verties.



De�nition 5. Let G = (V;E) be a dag, V1 � V , V2 � V , V1 \ V2 = ;. Let Cbe a on�guration on the graph (V2; E \ (V2 � V2)). Let f(w; v)jv 2 V1 ^ w 2V2^C(w) = 0^(w; v) 2 Eg = ;. Let C be a omputation of length n on the graph(V1; E\(V1�V1)). The omputation C merged with the on�guration C (denotedas C �C) is a omputation on the graph (V1 [ V2; E \ ((V1 [ V2)� (V1 [ V2))) oflength n de�ned as follows:{ (C � C)(i)(v) = C(i)(v), if v 2 V1{ (C � C)(i)(v) = C(v), if v 2 V2This de�nition is learly orret. By adding the same on�guration to allon�gurations of some omputation C, it is only one way to violate the rulesof the reversible pebble game: if some of the added diret predeessors of avertex, whih the pebble is laid on or removed from, are not pebbled. But thisis prohibited by the assumption of de�nition.Any omputation on a graph G an be applied on any graph G0 that isisomorphi with G. The appliation of a omputation an be de�ned as follows:De�nition 6. Let C be a omputation of length n on a dag G and G0 be adag isomorphi with G. Let ' is the isomorphism between G0 and G. Then aomputation C applied to the graph G0 (denoted as CjG0) is a omputation onG0 of length n suh that (CjG0)(i)(v) = C(i)('(v)) for all 1 � i � n and for allverties v of G0.3 Chain TopologyThe simplest topology for a pebble game is a hain. Chain with n verties(denoted as Ch(n)) is a dag Ch(n) = (V;E), where V = f1 : : : ng and E =f(i� 1; i)ji 2 f2 : : : ngg. This topology is an abstration of a simple straightfor-ward omputation, where the result of step n + 1 an be omputed only fromthe result of step n.In this setion we disuss optimal spae omplexity for a reversible pebblegame on the hain topology { the minimal spae funtion Smin(n) for Ch, wherethe sublass Chn ontains only a hain Ch(n). We will disuss also partial lowerand upper bounds for optimal time and spae omplexities { the time fun-tion T(n; Smin(n)) and the upper bound of the time-spae tradeo� for the haintopology.3.1 Optimal Spae for the Chain TopologyFor determining spae omplexity of the reversible pebble game on the haintopology we will examine the maximum length of the hain, that an be peb-bled by p pebbles. We denote this length as S�1(p). It holds, that S�1(p) =maxfmj(9C 2 CCh(m)) S(C) � pg, where CCh(m) is the set of all omputationson the graph Ch(m).



Reversible pebble game on the hain topology was studied in onnetionwith reversible simulation of irreversible omputation. C. H. Bennett suggestedin [1℄ a pebbling strategy, whose speial ase has spae omplexity �(lg n). Spaeoptimality of this algorithm was proved in [5℄ and [4℄. This result is formulatedin following theorem.Theorem 1. It holds that S�1(p) = 2p�1. Therefore for minimal spae funtionof hain topology Smin(n) it holdsSmin(n) = �(lgn)3.2 Optimal Time and Spae for the Chain TopologyIn this setion we present upper and partial lower bounds on time for spaeoptimal reversible pebble game played on a hain topology.We will use two auxiliary lemmas. Their proofs are not diÆult and are leftout due to spae reasons.Lemma 1. Let C be a omplete omputation of length l on Ch(n), S(C) =Smin(n), T(C) = T(n; Smin(n)). Let i = minfiji 2 f1 : : : lg ^ C(i)(n) = 1g. Thenit holds that T(Rst(C; 1; i)) = T(Rst(C; i; l)) = T(C)2Lemma 2. Let C be a omplete omputation on Ch(S�1(p+ 1)) suh that S(C) =p+ 1. It holds thatmaxfminfjjj 2 f1 : : : ng ^ C(i)(j) = 1gji 2 f1 : : : lgg = S�1(p) + 1Now we prove the upper and partial lower bound on time for spae optimalpebble game:Theorem 2. T(S�1(p+ 1); p+ 1) � 2S�1(p) + 2 + 2T(S�1(p); p)Proof. Let C be a time optimal omplete omputation on Ch(S�1(p+ 1)), suhthat S(C) = p+1. Let l be the length of C. Clearly T(C) = T(S�1(p+1); p+1).We prove, that T(C) � 2S�1(p) + 2 + 2T(S�1(p); p) holds.Let n = S�1(p), G1 = (fn+ 1g; ;) and G2 be a graph obtained from Ch(n)by renaming verties to n+2 : : :2n+1 = S�1(p+1). Let i = minfiji 2 f1 : : : lg^C(i)(2n+ 1) = 1g. By Lemma 1 it holds T(Rst(C; 1; i)) = 12T(C). From Lemma2 follows, that Rst(C; k; k; f1 : : : n + 1g) 6= E(Ch(n)) � E(G1)) for all k and thatthere exists j suh that Rst(C; j; j; f1 : : : n+1g) = E(Ch(n))�Put(E(G1); n+1; 1).W.l.o.g. we an assume j � i (otherwise we an replae C by Rev(C)). Let k be aon�guration suh that C(k�1)(n+1) = 0 and (8q)(k � q � j)C(q)(n+1) = 1).Clearly C(k � 1)(n) = C(k)(n) = 1.Now onsider the omputation C2 = Rst(C; 1; k�1; f1 : : : ng) �E(G1) �E(G2)+Rst(C; k; j; f1 : : : ng) �Put(E(G1); n+1; 1) �E(G2)+Rst(C; 1; i; fn+2 : : :2n+1g) �



E(Ch(n)) � Put(E(G1); n + 1; 1). Clearly S(C2) � S(C). Also, C2 + Rev(C2) isomplete on Ch(2n+ 1) and T(C2) � T(Rst(C; 1; i)).It is lear, that T(Rst(C; 1; k�1; f1 : : : ng)) � n { we annot pebble n vertieswith time less than n. Rev(Rst(C; k; j; f1 : : : ng))+Rst(C; k; j; f1 : : : ng) is a spaeoptimal omplete omputation on Ch(n), therefore T(Rst(C; k; j; f1 : : : ng)) �12T(n; Smin(n)) = 12T(S�1(p); p). Analogially, T(Rst(C; 1; i; fn+2 : : :2n+1g)) �12T(n; Smin(n)) = 12T(S�1(p); p).From these inequalities follows, that T(Rst(C; 1; i)) � n+1+2 12T(n; Smin(n)).Therefore T(C) � 2n+ 2 + 2T(n; Smin(n)) = 2S�1(p) + 2 + 2T(S�1(p); p). utCorollary 1. T(n; Smin(n)) = O(nlog2 3), T(n; Smin(n)) 6= o(n lgn),Proof. The upper bound was presented in [4℄. By solving reurrent inequalityproved in preeding theorem, we obtain that T (n; Smin(n)) = 
(n lgn) for n =2p�1. Sine this funtion is a restrition of T (n; Smin(n)) for integer n, funtionT (n; Smin(n)) annot be o(n lgn). ut3.3 Upper Bound on Time-Spae Tradeo� for Chain TopologyIn the previous setion it was analysed time omplexity of reversible pebblingfor spae optimal omputations. Now we disuss the time omplexity for om-putations, that are not spae optimal.It is obvious, that for any omplete omputation C on Ch(n) it holds T(C) �2n, beause eah vertex has to be at least one time pebbled and at least onetime unpebbled. It is also easy to see, that spae of suh omputation is exatlyn. Now we will analyse spae omplexity of omplete omputations on Ch(n)that are running in time at most �n. Let S�1(; k) = maxfnj9C 2 CCh(n) S(C) �k ^T(C) � ng, where CCh(n) is the set of all omplete omputations on Ch(n).Theorem 3. For a �xed k, it holds S�1(2k; p) = 
(pk).Proof. We prove a statement S�1(2k; p) � (k)pk by indution on k and p. Let(1) = 1. The base ase S�1(21; p) � p holds trivially. (It is easy to make aomplete omputation C on Ch(p) satisfying S(C) = p and T(C) = 2p.)Assume by the indution hypothesis that it holds (8k0 < k)(8p0)S�1(2k0 ; p0) �(k0)p0k0 and (8p0 < p)S�1(2k; p0) � (k)p0k. We prove, that S�1(2k; p) � (k)pkholds.Let C1 be a omplete omputation on Ch(S�1(2k�1; p� 1)), S(C1) � p � 1,T(C1) � 2k�1S�1(2k�1; p�1). Denote the length of C1 by l1. Clearly there existsm suh that C1(m)(S�1(2k�1; p� 1)) = 1.Let C2 be a omplete omputation on Ch(S�1(2k; p� 1)), S(C2) � p � 1,T(C2) � 2kS�1(2k; p� 1).Let G1 = (fS�1(2k�1; p � 1) + 1g; ;). Let G2 is a graph obtained fromCh(S�1(2k; p� 1)) by renaming its verties to S�1(2k�1; p�1)+2; : : : ; S�1(2k�1;p�1)+1+S�1(2k; p�1). Now assume the following omputation C3 = Rst(C1; 1;m) �E(G1) �E(G2)+Rst(C1;m; l1) �Put(E(G1); S�1(2k�1; p� 1)+1; 1) �E(G2)+



(C2jG2) �E(Ch(S�1(2k�1; p� 1))) �Put(E(G1); S�1(2k�1; p�1)+1; 1)+Rev(Rst(C1;m; l1))�Put(E(G1); S�1(2k�1; p�1)+1; 1)�E(G2)+Rev(Rst(C1; 1;m))�E(G1)�E(G2).Clearly C3 is a omplete omputation on Ch(S�1(2k�1; p� 1) + 1 + S�1(2k;p� 1)) satisfying S(C3) � p and T(C3) � 2T(C1) + 2 + T(C2) � 2kS�1(2k�1; p�1) + 2 + 2kS�1(2k; p� 1) � 2k(S�1(2k�1; p� 1) + 1+ S�1(2k; p� 1)). ThereforeS�1(2k; p) � S�1(2k�1; p� 1) + 1 + S�1(2k; p� 1).By indution hypothesis we have S�1(2k; p) � (k � 1)(p� 1)k�1 + (k)(p�1)k. For a suitable value of (k) (we an hoose (k) = (k�1)2k ) it holds that(k � 1)(p � 1)k�1 + (k)(p � 1)k � (k)pk. Also there exists (k) suh thatS�1(2k; p) � (k)pk. utCorollary 2. Let k be �xed. Then O( kpn) pebbles are suÆient for a ompleteomputation on Ch(n) with time O(2kn).Another upper bound of the time-spae tradeo� for the reversible pebbling onhain topology an be obtained by using Bennett's pebbling strategy introduedin [1℄. Sine this strategy pebbles hain of length kn with n(k � 1) + 1 pebblesin time (2k � 1)n, it yields time-spae tradeo� in the form: spae O(k�1lg k lgn)versus time 
(n lg(2k�1)lg k ).4 Binary Tree TopologyIn this setion we will disuss spae omplexity of reversible pebble game onomplete binary trees. A omplete binary tree of height 1 (denoted as Bt(1)) isa graph ontaining one vertex and no edges. A omplete binary tree of heighth > 1 (denoted as Bt(h)) onsists of a root vertex and two subtrees, that areomplete binary trees of height h� 1.This topology represents a lass of problems, where the result an be om-puted from two di�erent subproblems.We denote the root vertex of Bt(h) as R(Bt(h)), the left subtree of Bt(h) asLt(Bt(h)) and the right subtree of Bt(h) as Rt(Bt(h)).As mentioned in setion 2, we denote the minimal number of pebbles neededto perform a omplete omputation on Bt(h) as Smin(h). In the sequel we alsoonsider the minimal number of pebbles needed to perform a omputation fromthe empty on�guration to a on�guration, where only the root is pebbled.De�nition 7. Let C be a omputation of length l on Bt(h). Let C(1) = E(Bt(h))and C(l) = Put(E(Bt(h));R(Bt(h)); 1). Then C is alled a semiomplete ompu-tation.The minimal number of pebbles needed to perform a semiomplete ompu-tation on Bt(h) (e.g. minfS(C)g, where C is a semiomplete omputation) willbe denoted as S0min(h).We will use the following inequalities between Smin(h) and S0min(h). Theirproofs are not diÆult and are left out due to spae reasons.



Lemma 3. Smin(h) + 1 � S0min(h) � Smin(h)Lemma 4. S0min(h+ 1) = Smin(h) + 24.1 Tight Spae Bound for Binary Tree TopologyFrom the previous lemmas follows, that S0min(h) equals to h plus the numberof suh i < h, that S0min(i) = Smin(i). In the following onsiderations we use afuntion S0�1min. The value h = S0�1min(p) denotes the maximal height of binary treethat an be pebbled by a semiomplete omputation, that uses at most h + ppebbles. Formally, S0�1min(p) = maxfhj9C 2 Sh^S(C) = h+pg, where Sh is theset of all semiomplete omputations on Bt(h). From the de�nition of S0�1min(p)follows, that S0min(h) = h+ (S0�1min)�1(h).Now we prove the upper (lower) bound of S0�1min(p). From that follows lower(upper) bound of S0min(h) and therefore also lower (upper) bound of Smin(h)respetively.Lemma 5. Let h0 = S0�1min(p), h = S0�1min(p + 1). Then the following inequalityholds: h� h0 � 1 � 2h0+p+1 � 1Proof. A on�guration on a binary tree is alled opened, if there exists a pathfrom the root to some leaf of the tree, suh that no pebble is laid on this path.Otherwise, the on�guration is alled losed.From the assumption h = S0�1min(p+ 1) follows, that there exists some semi-omplete omputation C of length l on Bt(h), suh that S(C) = h+ p+ 1. Let ibe the �rst on�guration of C, suh that C(j)(R(Bt(h))) = 1 for any j � i (e.g.i = minfij(8j � i) C(j)(R(Bt(h))) = 1g ).Beause C is a reversible omputation, C(i)(R(Lt(Bt(h)))) = C(i)(R(Rt(Bt(h)))) = 1. Therefore Put(C(i);R(Bt(h)); 0) is a losed on�guration. BeausePut(C(l);R(Bt(h)); 0) = E(Bt(h)), this on�guration is opened. Let j be theminimal number suh that j � i and Put(C(j);R(Bt(h)); 0) is opened.Beause Put(C(j);R(Bt(h)); 0) is opened and Put(C(j � 1);R(Bt(h)); 0) islosed and C is a reversible omputation, there exists exatly one path in C(j)from the root to a leaf, suh that no pebble is laid on it. Without loss of general-ity we an assume, that this path is R(Bt(h));R(Rt(Bt(h)));R(Rt2(Bt(h))); : : : ;R(Rth�1(Bt(h))).Now we prove, that for eah k, h � k � h0 + 2 and for eah p, i � p < j, itholds that #(C(p)(Lt(Rth�k(Bt(h))))) > 0.Assume, that this onjeture does not hold. Let k be the maximal num-ber suh that violates this onjeture. Let p be the maximal number suh thati � p < j and #(C(p)(Lt(Rth�k(Bt(h))))) = 0_#(C(p)(Rt(Rth�k(Bt(h))))) = 0.Without loss of generality, let #(C(p)(Lt(Rth�k(Bt(h))))) = 0. Beause Put(C(p);R(Bt(h)); 0) is losed, in a on�guration C(p) is pebbled at least one vertex fromR(Rt(Bt(h))), R(Rt2(Bt(h))), . . . , R(Rth�k(Bt(h))). In a on�guration C(j) areall these verties unpebbled. Let q be the minimal number suh that q > p and all



these verties are unpebbled in C(q). Beause C is a reversible omputation, C(q�1)(R(Rth�k(Bt(h)))) = 1, C(q)(R(Rth�k(Bt(h)))) = 0 and C(q)(R(Lt(Rth�k(Bt(h))))) = 1. Now onsider the omputation C0 = Rst(C; p; q;Lt(Rth�k(Bt(h)))).Computation C0 + Rev(C0) is a omplete omputation on Lt(Rth�k(Bt(h))))(this graph is isomorphi to Bt(k � 1)). Spae of this omputation is at mostS(C0 +Rev(C0)) � S(C)� (3 + h� k) = k+ p� 2. From our assumption follows,that spae for any semiomplete omputation on Bt(k�1) is at least k+p. FromLemma 3 follows, that the spae for any omplete omputation on Bt(k � 1) isat least k + p� 1, what is a ontradition.Now onsider C2 = Rst(C; i; j;R(Rt(Bt(h))) [ R(Rt2(Bt(h))) [ : : : [ R(Rth�h0�1(Bt(h)))). It is a omputation on a graph isomorphi to Ch(h�h0�1).In the �rst on�guration of C2, vertex R(Rt(Bt(h))) is pebbled. In the last on-�guration of C2, no vertex is pebbled. Therefore Rev(C2) + C2 is a ompleteomputation on a graph isomorphi to Ch(h� h0 � 1).Beause for eah k, h � k � h0 + 2 and for eah p, i � p � j, it holds that#(C(p)(Lt(Rth�k(Bt(h))))) > 0 and C(p)(R(Bt(h))) = 1, we an estimate upperbound for spae of C2: S(C2) � (h+p+1)�(1+h�h0�1) = h0+p+1. Using spaeupper bound for hain topology (Theorem 1) we have h� h0 � 1 � 2h0+p+1 � 1.utLemma 6. Let h0 = S0�1min(p), h = S0�1min(p + 1). Then the following inequalityholds: h� h0 � 1 � 2h0+p�2 � 1Proof. We prove by indution, that for eah k 2 fh0 + 1 : : : h0 + 2h0+p�2g thereexists a semiomplete omputation C on Bt(k) suh that S(C) � k+ p+1. Thisimplies, that h � h0 + 2h0+p�2.The base ase is k = h0 + 1. By assumption there exists a semiompleteomputation C on Bt(h0) suh that S(C) = h0+ p. After applying C to Lt(Bt(k))and Rt(Bt(k)), pebbling R(Bt(k)) and applying reversed C to Lt(Bt(k)) andRt(Bt(k)) we obtain a semiomplete omputation on Bt(k) that uses at mosth0 + p+ 2 = k + p+ 1 pebbles.Now assume that the indution hypothesis holds for eah i 2 fh0+1 : : : k�1g.We onstrut a omputation C on Bt(k) as follows: At �rst we apply semi-omplete omputations on Lt(Bt(k)), Lt(Rt(Bt(k))), . . . , Lt(Rtk�h0�2(Bt(k))),Lt(Rtk�h0�1(Bt(k))), Rtk�h0(Bt(k)) sequentially. By indution hypothesis, thespae of a semiomplete omputation on Lt(Rti(Bt(k))) is less than or equal to(k� i�1)+p+1 for i � k�h0�2. By assumption, the spae of a semiompleteomputation on Lt(Rtk�h0�1(Bt(k))) and Rt(Rtk�h0�1(Bt(k))) is less than orequal to h0 + p. Therefore spae of this part of C is less than or equal to k + p.In the seond part of C, we perform a spae optimal omplete omputation ona hain onsisting of verties R(Bt(k)), R(Rt(Bt(k))), . . . , R(Rtk�h0�1(Bt(k))).Due to the Theorem 1, spae of this part is less than or equal to dlog2(k�h0+1)e+k�h0+1. Beause k � h0+2h0+p�2, it holds dlog2(k�h0+1)e+k�h0+1 � k+p.The third part of the omputation C is the reversed �rst part.



Also, C is a omplete omputation on Bt(k) and S(C) � k + p. Hene,Smin(k) � k + p. Using Lemma 3, S0min(k) � k + p + 1. Therefore there ex-ists a semiomplete omputation on Bt(k) with spae less than k + p+ 1. utLemma 7. For p � 2 it holds that 2S0�1min(p) � S0�1min(p+ 1) � 24 S0�1min(p).Proof. Let h0 = S0�1min(p), h = S0�1min(p + 1). From Lemma 5 follows h � h0 �2h0+p+1, what is equivalent to S0�1min(p+ 1) � 2S0�1min(p)+p+1 + S0�1min(p).From the de�nition of S0�1min and from Lemma 3 and Lemma 4 trivially follows,that S0�1min(p) � 2p. Therefore 2S0�1min(p)+p+1+S0�1min(p) � 24 S0�1min(p) for p � 1. Also,the seond inequality holds.From Lemma 6 follows h�h0 � 2h0+p�2, what is equivalent to S0�1min(p+1) �2S0�1min(p)+p�2+S0�1min(p). Therefore for p � 2 it holds S0�1min(p+1) � 2S0�1min(p). utTheorem 4. Smin(h) = h+�(lg�(h))Proof. From the previous lemma follows, that S0�1min(p) = O( pz }| {1616���16) and thatS0�1min(p) = 
( pz}|{22���2). Beause S0min(h) = h+(S0�1min)�1(h), it holds that S0min(h) =h+
(lg�(h)) and S0min(h) = h+O(lg�(h)). Therefore S0min(h) = h+�(lg�(h)).From Lemma 3 follows, that Smin(h) = h+�(lg�(h)). ut4.2 Extension to ButteriesButtery graphs reate important lass of graphs to study, as they share su-peronentrator property and the butteries form inherent struture of someimportant problems in numerial omputations, as disrete FFT.A buttery graph of order d is a graph G = (V;E), where V = f1 : : : dg �f0 : : : 2d�1� 1g and E = f((i; j); (i+1; j xor 2i�1))j1 � i < d; 0 � j � 2d�1� 1g.This graph an be deomposed into 2d�1 omplete binary trees of height d. Theroot of i-th tree is vertex (1; i) and this tree ontains all verties, that an bereahed from the root.The deomposition property implies, that the minimal spae omplexity ofa omplete omputation on buttery graph of order d annot be lower than theminimal spae omplexity on a omplete binary tree of height d (otherwise wean restrit a omplete omputation on buttery to any binary tree to obtain aontradition).On the other side, by sequentially applying omplete omputations to allbinary trees obtained by deomposition of the buttery graph, we obtain a om-plete omputation on it. Also, we an onstrut a omplete omputation on abuttery graph of order d with spae omplexity equal to minimal spae om-plexity of the binary tree of height d. Therefore the minimal spae omplexity ofthe buttery topology equals to the minimal spae omplexity of the binary treetopology (e.g. the minimal spae for a buttery graph of order d is d+�(lg�(d))).
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