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Abstract

This paper studies the problem of broadcasting in synchronous point-to-point net-
works, where one initiator owns a piece of information that has to be transmitted
to all other vertices as fast as possible. The model of fractional dynamic faults with
threshold is considered: in every step either a fixed number c(G)− 1, where c(G) is
the edge connectivity of the communication graph, or a fraction α of sent messages
can be lost depending on which quantity is larger.

As the main result we show that in complete graphs and hypercubes it is possi-
ble to inform all but a constant number of vertices, exhibiting only a logarithmic
slowdown, i.e. in time O(D log n) where D is the diameter of the network and n is
the number of vertices.

Moreover, for complete graphs under some additional conditions (sense of direc-
tion, or α < 0.55) the remaining constant number of vertices can be informed in
the same time, i.e. O(log n).

1 Introduction

Fault tolerance has been a crucial issue in distributed computing since its be-
ginnings [3,5,6,10,16,24]. Because a typical distributed system is designed to
contain a large number of individual components, attention must be paid to
the fact that, even if the failure probability of a single component is negligible,
the probability that some components fail may be high. There are numerous
ways how to cope with failures, using either probabilistic or deterministic ap-
proaches. In the probabilistic setting, it is supposed that a failure probability
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of each component follows some probability distribution [4, 8, 11, 25, 26]. Fail-
ures of individual components are usually assumed to be independent random
events. The goal is to design algorithms and protocols that perform well with
high probability if the failures follow the conjectured distribution.

The deterministic approach, which is also pursued in this paper, copes with
failures in a different way. Instead of considering a failure probability distribu-
tion for each individual component, algorithms and protocols are designed to
perform well in the worst case, under some a-priori constraints on the failure
behavior. [1,2,7,12–14,19,20,22,23,27]. These constraints may take the form of
considering only computations with a limited overall number of faults [1, 19],
limited number of faults during any single computation step [7, 13, 14, 23,27],
or during any window of first t steps [20], requiring that after some finite time
there is a long enough fault-free computation [10,15] etc. While the probabilis-
tic model is analyzed with respect to the expected behavior, the deterministic
models have been mostly analyzed for the worst case scenario.

We shall focus our attention on synchronous point-to-point distributed sys-
tems, i.e. systems in which the communication is performed by sending mes-
sages along links connecting pairs of vertices. Moreover, the vertices are syn-
chronized by a common clock, and the delivery of every message takes exactly
one time unit. This model has been widely considered [7, 8, 12–14, 20, 22, 23,
25–27] not only for its theoretical appeal, but for its practical relevance as well
(e.g. many wireless networking standards, like IEEE 802.11, or GSM, operate
in discrete time steps). We shall consider only one type of failure: message
loss.

The oldest deterministic model of faults considered in this setting is the static
model [1, 3], in which it is assumed that at most a fixed constant number k
of messages may be lost in every step, and moreover, the failures are always
located on the same links. Later, other models have been considered, too, like
the dynamic model [7,13,14,23,27] in which the k failures may be located on
arbitrary links in every step, linearly bounded faults [20], fractional faults [22],
etc.

In [22], the fractional model has been introduced in which the number of lost
messages in a given step is at most bαmc where m is the number of messages
sent to uninformed vertices only, and 0 < α < 1 is some fixed constant.
This model has, however, two major disadvantages. Considering only messages
sent to uninformed vertices is rather unrealistic, since it requires a reliable
acknowledgement mechanism. Furthermore, if only one message is sent in this
model, it is guaranteed to be delivered, since bαc = 0 for any 0 < α < 1.

To overcome both these undesirable features, a fractional model with threshold
was introduced in [12]. Here, the number of messages lost in one time step is
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bounded by the maximum of a fixed threshold T and a fixed fraction α of
all sent messages. This restriction implies that if, in a given step, fewer than
T messages are sent they may all be lost. On the other hand, if there are
many messages sent, at least a fixed fraction 1− α of them is delivered. The
threshold T is always assumed to be the edge connectivity minus one, since
this is the largest value under which the network stays connected.

While it makes sense to modify the model of [22] without introducing the
threshold (i.e. avoiding only one of the disadvantages mentioned), this has not
been done so far. Hence, it is an open problem if introducing the threshold
has a significant impact on the time complexity of distributed algorithms. It
might be the case that using some advanced techniques one can prove that the
threshold indeed does not influence the computation too much, although this
would be quite surprising. We focus, however, on the analysis of the fractional
model with threshold, since we consider it to be more realistic.

The fractional model with threshold avoids both problems of fractional model
mentioned above, as well as undesirable properties of the static and dynamic
models (where the number of faults is independent on the actual network
traffic). This model has been analyzed without the restriction to greedy algo-
rithm. In this paper, we continue in the analysis of the fractional model with
threshold.

The broadcasting problem is a crucial communication task in the study of
distributed systems (e.g. [21]). One vertex, called the initiator, has a piece of
information that has to be distributed among all remaining vertices. Broad-
casting has not only been used as a test-bed application for the study of
the complexity of communication in various communication models, but has
served as a building stone of many applications (e.g. [28]) as well.

We analyze the broadcasting in complete graphs and hypercubes. The broad-
casting time in these graphs has been studied in the static [19], dynamic
[13,14,23], and simple threshold [12] 1 models. In [22], broadcasting has been
analyzed in the fractional model described above. Results from this paper
concern the greedy offline algorithm, i.e. the algorithm that sends, in every
step, messages to all uninformed neighbors of informed vertices. The results
are summarized in Table 1.

We also address a natural relaxation of the broadcasting problem in which
we allow a small constant number of vertices to stay uninformed in the end
(a problem called almost complete broadcasting), and analyze the worst case
time needed to solve the problem.

1 If the number of messages sent in a given time step is less than the edge connec-
tivity c(G) in the simple threshold model, all of them may be lost. Otherwise at
least one of them is delivered.
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Model Kn, chordal Kn Qd, n = 2d

sense of direction unoriented

static Θ(1) Θ(1) d+ 1 [19]

dynamic Θ(1) Θ(1) [23] d+ 2 [13]

fractional (greedy offline) Θ(log n) [22] Θ(log n) [22] O(d3) [22]

simple threshold Ω(n), O(n2) [12] Ω(n2), O(n3) [12] O(n4d2) [12]
Table 1
Known time complexities of the complete broadcasting in various models.

Scenario Almost complete Complete

broadcasting broadcasting

Kn, unoriented O(log n) Ω(log n) [22], O(n3) [12]

Kn, chordal sense of direction O(log n) Ω(log n) [22], O(log n)

Kn, α < 0.55 O(log n) Ω(log n) [22], O(log n)

Qd O(d2) Ω(d), O(n4d2) [12]
Table 2
Results for the complete and almost complete broadcasting in the fractional model
with threshold.

Our first motivation for studying this problem was to create a setting that
would allow for a more practical comparison with a randomized setting, where
a small probability of error is acceptable. If one considers the broadcasting
problem as an optimization problem where the task is to inform as many ver-
tices as possible, it is natural to introduce a constant additive error by allowing
a constant number of vertices to stay uninformed, so that the uninformed ver-
tices comprise at most an O(1/n) fraction of all vertices and the relative error
tends to zero with increasing n.

This setting also seems to be practical in many applications. One can think
of sensor networks with limited battery capacities of nodes; when the battery
capacity is depleted, the node goes out of operation. During the lifetime of
the network, some nodes are already dead and some are still alive. When a
broadcast is to be performed it might be better to “sacrifice” some active
nodes in exchange for the reduction of running time which saves the energy
of all other nodes.

Moreover, it seems that the study of almost complete broadcasts may help in
understanding the differences among various models of faults. Indeed, for static
and dynamic faults, performing the almost complete broadcast is essentially
as hard as performing the complete broadcast. In the fractional model with
threshold, however, it seems that the difficult part of the complete broadcast is
to inform the last few vertices. The main question is whether the complexities
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of the complete broadcast and almost complete broadcast differ in this setting.

For complete graphs and hypercubes, we show that the almost complete broad-
cast can be solved in time O(D log n), where D is the diameter of the graph
and n is the number of its nodes.

Moreover, we show that if the complete graph is equipped with the chordal
sense of direction, complete broadcasting can be performed in time O(log n).
This is asymptotically optimal since the broadcasting time in the fractional
model is a lower bound for the fractional model with threshold. Similarly
we show that the broadcasting can be completed in time O(log n) for values
α < 0.55. The overview of the results can be found in Table 2. The lower
bounds on complete broadcasting presented in [22] for the greedy algorithm in
the fractional model can be adapted to an arbitrary algorithm in the fractional
model with threshold in a straightforward way.

2 Definitions

We consider a synchronous, point-to-point distributed system with a coordi-
nated start-up. The system consists of a number of nodes and a number of
communication links connecting some pairs of nodes. The system is modeled
by an undirected graph, in which vertices correspond to nodes and edges corre-
spond to communication links. In this respect, we shall use the terms “node”
and “vertex” interchangeably. Sometimes we need to argue about outgoing
and incoming links; in this cases we consider a directed graph obtained from
the undirected one by replacing each edge by two opposite arcs.

At the beginning of the computation all nodes are active and start performing
the given protocol. The computation consists of a number of steps: at the
beginning of each step, messages sent during the previous step are delivered to
their destinations, then each vertex performs some local computation, possibly
sending some messages 2 , and the next step begins.

The failure model we consider is the fractional dynamic faults with threshold
from [12], which can be described as a game between the algorithm and an
adversary: in a time step t the algorithm sends mt messages and the adversary
may destroy up to

F (mt) = max{c(G)− 1, bα mtc}

of them, where c(G) is the edge connectivity of the graph and α is a known,
fixed constant 0 < α < 1. There is no built-in mechanism of acknowledge-

2 I.e. a vertex may send different message to each of its neighbors in one step
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ments, so the sender node is not informed whether a particular message was
delivered or destroyed. Of course, such acknowledgements may be implemented
within an algorithm, but they are treated as any other message.

We consider the problem of broadcasting, where an initiator has a piece of
information to be transmitted to all remaining vertices. We call a broadcast
complete if all vertices have the information after the termination of the al-
gorithm. A broadcast is called almost-complete if there is a fixed constant c
(independent on the network size) such that after the termination there are
at most c uninformed vertices. Hence, to prove the existence of an almost-
complete broadcasting algorithm for a family of graphs G, one has to prove
that there exists a constant c such that for each G ∈ G the broadcasting
algorithm informs all but c vertices of G.

In all presented algorithms only the informed vertices send messages. Arcs
(i.e. directed edges) leading from an informed vertex can be classified as being
either active, passive or hyperactive during the computation:

Definition 1 Let e be an arc leading from an informed vertex. We call e
active if it leads to an uninformed vertex. We call an arc e passive, if some
message has been delivered via the opposite arc of e. Finally, we call an arc e
hyperactive if it leads to an informed vertex, and is not passive.

If the arc e is passive, the source vertex of e is aware of the fact that the desti-
nation vertex of e has already been informed. The main idea of our algorithms
is to perform appropriate number of simple rounds defined as follows:

Definition 2 A simple round consists of two time steps. In the first step, ev-
ery informed vertex sends a message along each of its incident arcs, excluding
the passive ones. 3 In the second step, all vertices that have received a message
send an acknowledgement (and mark the arc as passive). Vertices that receive
acknowledgement mark the corresponding arc as passive.

For the remainder of this paper, let 0 < α < 1 be a known fixed constant, and
let us denote

X :=
1

α(1− α)

The rest of the paper is organized as follows. In the next two sections we
present algorithms for the almost-complete broadcasting on complete graphs
and hypercubes, respectively, that run in time O(D log n). Then we show how
to obtain broadcast in complete graphs equipped with chordal sense of direc-

3 In this step, a message is sent via all active and hyperactive arcs. The former can
inform new vertices, the latter exhibit only useless activity. However, the algorithm
cannot distinguish between active and hyperactive arcs.
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tion, and for unoriented complete graphs for α < 0.55, having the same time
complexity. Finally, we conclude and outline some further research directions.

3 Complete Graphs

In a complete graph Kn, all n vertices have degree n − 1, and n − 1 is also
the edge connectivity. Hence, in each step t the adversary can destroy up
to max{n − 2, bαmtc} messages, where mt is the number of messages sent
in the step t. In this section we present an algorithm that informs all but a
constant number of vertices in logarithmic time. The idea of the algorithm
is very straightforward – just repeat simple rounds sufficiently many times.
However, the arguments given in the analysis of a simple round below hold
only if there are enough informed vertices participating in the round. To sat-
isfy this requirement two steps of a simple greedy algorithm are performed,
during which each informed vertex just sends the message to all vertices. After
two steps of this algorithm, the number of informed vertices is as shown in
Lemma 1.

Lemma 1 After two steps of the greedy algorithm, at least

1 + min
{
n

2
, (n− 1)(1− α)

}
vertices are informed, for any n ≥ 1.

Proof: In the first step the initiator sends n − 1 messages. Let l ≥ 2 be the
number of informed vertices after the first step. In the second step, l(n − 1)
messages are sent, and max{n− 2, αl(n− 1)} of them are lost. We distinguish
two cases:

Case 1: αl(n− 1) ≤ n− 2
In this case, at most n − 2 messages are lost, i.e. at least l(n − 1) − n + 2
are delivered. Among those delivered, at most l(l − 1) could have been sent
to already informed vertices. Moreover, since each uninformed vertex has at
most l informed neighbors, we get that the number of informed vertices is at
least

l +
l(n− 1)− n+ 2− l(l − 1)

l
= n− n− 2

l
Since l ≥ 2 we get that the number of informed vertices after the two steps is
a least n

2
+ 1.

Case 2: αl(n− 1) > n− 2
This time, at most αl(n − 1) messages are lost. Using similar arguments, we
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get that the number of informed vertices is at least

l +
l(n− 1)(1− α)− l(l − 1)

l
= 1 + (n− 1)(1− α)

2

After these two steps, the algorithm performs a logarithmic number of sim-
ple rounds. To show that logarithmic number of simple rounds is sufficient
to inform all but one vertex we first provide a lower bound on the number
of acknowledgements delivered in each round, and then we show that each
delivered acknowledgement decreases a certain measure function.

Theorem 1 Let ε > 1 be an arbitrary constant. For large enough n it is
possible to inform all but at most Xε vertices in logarithmic time. Moreover,
the number of remaining hyperactive arcs is at most X(n− 2).

Proof: At the beginning, two steps of the greedy algorithm are executed.
Then, a logarithmic number of simple rounds is performed. Now consider
the situation at the beginning of the i-th round. Let ki be the number of
uninformed vertices, and hi the number of hyperactive arcs. We claim that if
ki > Xε or hi > X(n− 2) then at least

[ki(n− ki) + hi] (1− α)2

acknowledgements are delivered in this round. Since there are ki(n− ki) + hi
messages sent in this round, in order to prove the claim it is sufficient to show
that

α(1− α) [ki(n− ki) + hi] ≥ n− 2.

Indeed, in this case, it holds that

α [ki(n− ki) + hi] ≥ n− 2 = c(G)− 1,

hence at most
α [ki(n− ki) + hi]

messages are lost. This means that at least

(1− α) [ki(n− ki) + hi]

messages are delivered, and the same number of acknowledgements are sent.
Due to the assumption, at most

α(1− α) [ki(n− ki) + hi]

acknowledgements are lost, so at least

[ki(n− ki) + hi] (1− α)2

8



of them are delivered.

Obviously, if hi > X(n− 2) the inequality

α(1− α) [ki(n− ki) + hi] ≥ n− 2

holds, so consider the case ki > Xε. We prove that in this case

ki(n− ki) ≥ X(n− 2),

i.e.

k2
i − nki +X(n− 2) ≤ 0.

Let

f(n) := 1/2
(
n−

√
n2 − 4X(n− 2)

)
.

The roots 4 of the equation k2
i − nki + X(n − 2) = 0 are f(n) and n − f(n),

so we want to show that f(n) ≤ ki ≤ n− f(n). We have

lim
n7→∞

f(n) = lim
n→∞

1/2(n−
√
n2 − 4X(n− 2)) =

lim
n→∞

1/2(n−
√
n2 − 4X(n− 2))

n+
√
n2 − 4X(n− 2)

n+
√
n2 − 4X(n− 2)

=

lim
n→∞

1/2
n2 − n2 + 4X(n− 2)

n+
√
n2 − 4X(n− 2)

=

lim
n→∞

1/2
4X(1− 2/n)

1 +
√

1− 4X(1/n− 2/n2)
= X

so we get that ki > Xε > f(n) holds for large enough n. Hence, the only
remaining step is to show the inequality ki ≤ n − f(n). From Lemma 1 it
follows that

n− ki > min {n/2, (n− 1)(1− α)} .
Since f(n) < n/2, if n − ki > n/2 it holds ki < n − f(n). So let us suppose
that n− ki > (n− 1)(1− α), i.e. ki < 1 + α(n− 1). Let

n ≥ ε+ α(1− α)2

α(1− α)2
.

Then it holds for large enough n that

ki < 1 + αn− α ≤ n− ε

α(1− α)
= n− εX ≤ n− f(n).

4 Assume that n is large enough such that f(n) is real number.
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We have proved that if ki > Xε or hi > X(n− 2) then at least

[ki(n− ki) + hi] (1− α)2

acknowledgements are delivered in round i.

To conclude the proof we show that after logarithmic number of iterations
we get ki ≤ Xε and hi ≤ X(n − 2). Let Mi := 2(n − 1)ki + hi; then every
delivered acknowledgement decreases Mi by at least one: indeed, if the ac-
knowledgement was delivered over a hyperactive arc, hi decreases by 1. If, on
the other hand, the acknowledgement was delivered over an active arc, the
number of uninformed vertices is decreased by at least one, and the number
of hyperactive arcs is increased by at most 2n − 3 (new hyperactive arcs are
between the newly informed vertex and any other vertex, with the exception
of the arc that delivered the acknowledgement which is passive).

From Lemma 1 it follows that either n− ki > n/2 or n− ki > (n− 1)(1− α).
In the first case it follows that at least

(1− α)2 [ki(n− ki) + hi] > (1− α)2 [kin/2 + hi] ≥
(1− α)2

4
Mi

acknowledgements are delivered. In the second case we get that at least

(1− α)2 [ki(n− ki) + hi] > (1− α)2 [ki(n− 1)(1− α) + hi] ≥
(1− α)3

2
Mi

acknowledgements are delivered. Let

c := min{(1− α)2

4
,
(1− α)3

2
},

then obviously every iteration decreases the value of Mi at least by factor
c. Since the value of M at the beginning of the algorithm is M1 = O(n2),
log1/cM1 = O(log n) steps are sufficient to inform all but a constant num-
ber (at most Xε) of vertices and to ensure that the number of remaining
hyperactive arcs is linear (at most X(n− 2)). 2

4 Hypercubes

In this section we consider d-dimensional hypercubes. The hypercube Qd has
2d vertices, and both diameter and edge connectivity are d. We present an
algorithm that informs all but a constant number of vertices in time O(d2).

The general idea is the same as for complete graphs: first we perform two
initialization steps to make sure there are enough informed vertices for the

10



subsequent analysis to hold. Next, simple rounds are repeated for a sufficient
number of times. The analysis, however, is more complicated in this case.

The next lemma covers the initialization steps. In the first step, the initiator
sends a message to all its neighbors, and at least one of these messages is
delivered. In the second step, the initiator sends a message to all its neighbors
again; moreover, each of the vertices informed in the first step sends a message
to all its neighbors except the initiator.

Lemma 2 After the first two steps of the algorithm, at least 1−α
2

(2d − 1)
vertices are informed.

Proof: In the first step, the initiator sends d messages. Since at most d − 1
can be lost, some l > 0 of them are delivered. In the second step, the initiator
sends again d messages, but at the same time, each of the informed vertices
sends d− 1 messages to all its neighbors except initiator. Hence, d+ l(d− 1)
messages are sent in the second step. Let us distinguish two cases:

If d − 1 messages are lost, then d + (l − 1)(d − 1) messages are delivered. l
messages from the initiator can be delivered to the already informed vertices
which leaves d + (l − 1)(d − 1) − l messages that enter uninformed vertices.
Since at most l messages can be destined to the same vertex, The number of
informed vertices after two steps is at least 1+l+ d+(l−1)(d−1)−l

l
≥ (1/2)(2d−1).

If at most α[d+ l(d−1)] messages are lost, then at least (1−α)[d+ l(d−1)]− l
messages arrive into uninformed vertices. Hence, there are at least 1−α

l
[d+l(d−

1)] + l ≥ 1−α
2

(2d− 1) informed vertices. 2

For the rest of this section we suppose that there are at least 1−α
2

(2d− 1) in-
formed vertices. We show that after O(d2) simple rounds all but some constant
number of vertices are informed, and there are only linearly many hyperac-
tive arcs. At the end of this section, we shall be able to prove the following
theorem.

Theorem 2 Let ε > 1 be an arbitrary constant. For large enough d it is
possible to inform all but at most Xε vertices of Qd within O(d2) time steps.
Moreover, the number of remaining hyperactive arcs is at most X(d− 1).

In our analysis we need to assert that enough acknowledgements are delivered,
given the number of informed vertices. To bound the number of sent messages,
we rely heavily upon the following isoperimetric inequality due to Chung et.
al. [9]:

Claim 1 [9] Let S be a subset of vertices of Qd. The size of the edge boundary
of S, denoted as ∂(S) is defined as the number of edges connecting S to V (Qd)\
S. Let ∂(k) = min|S|=k ∂(S), and let lg denote the logarithm of base 2. It holds
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that

∂(k) ≥ k(d− lg k)

The first step in the analysis is to prove that if there are enough uninformed
vertices, or enough hyperactive arcs at the beginning of a round i, then suffi-
ciently many acknowledgements are delivered in this round:

Lemma 3 Consider a d-dimensional hypercube with k non-informed vertices
and h hyperactive arcs. Let ε > 1 be an arbitrary constant, and let k > Xε or
h > X(d− 1). Then in the second step of a simple round at least (1−α)2(h+
∂(k)) acknowledgements are delivered.

Proof: Let S be the set of informed vertices. In the first step of the round, h+
∂(S) messages are sent. Since the edge boundary of informed and uninformed
vertices is the same, at least h + ∂(k) messages are sent in the first step of
the round. We prove that α(h + ∂(k)) ≥ d − 1, so in the first step at most
α(h + ∂(k)) messages are lost, and at least (1 − α)(h + ∂(k)) of them are
delivered. Next we prove that α(1 − α)(h + ∂(k)) ≥ d − 1, so in the second
step at least (1− α)2(h+ ∂(k)) messages are delivered. Since 1− α < 1, it is
sufficient to prove that α(1− α)(h+ ∂(k)) ≥ d− 1.

If h > X(d− 1) then obviously h+ ∂(k) ≥ X(d− 1) and the statement holds.
Next, let us consider the case when h > X/ε. We distinguish three cases and
prove that in each case ∂(k) ≥ X(d− 1). Let δ := 1− 1/ε, i.e. 1/(1− δ) = ε.

Case 1: k ≤ 2δd

In this case it holds that ∂(k) ≥ k(d− lg k) ≥ kd(1−δ). Since k > X/(1−δ) =
Xε, we get ∂(k) ≥ Xd.

Case 2: 2δd ≤ k ≤ 2d
(
1− 1

e

)
, where e is the base of natural logarithm

In this case ∂(k) ≥ k(d − lg k) ≥ 2δd
(
d− d− lg

(
1− 1

e

))
= 2δd lg e

e−1
≥

0.6 ·2δd. Since X is constant, for large enough d it holds that ∂(k) ≥ 0.6 ·2δd >
X(d− 1).

Case 3: 2d
(
1− 1

e

)
≤ k

First, let us consider a function f(x) := x(d − lg x), for x ∈
〈
0, 2d

〉
. Since

f ′(x) = d − 1/ ln 2− lg x, f(x) is increasing for x ∈
〈
0, 2d/e

〉
and decreasing

for x ∈
〈
2d/e, 2d

〉
.

Obviously, the edge boundary of uninformed vertices ∂(k) is the same as the
edge boundary of informed vertices ∂(2d−k). Hence, we get ∂(k) ≥ f(2d−k).
Since 2d − k ≤ 2d 1

e , the minimum of f(2d − k) is attained for the minimal
value of 2d− k. From Lemma 2 we know that 2d− k > 1−α

2
(2d− 1), so ∂(k) ≥
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f
(

1−α
2

(2d− 1)
)

= 1−α
2

(2d − 1)
(
d− lg 1−α

2
(2d− 1)

)
= (1 − α)d2 − O(d lg d).

Hence, for large enough d we get ∂(k) ≥ X(d− 1). 2

In the rest of the proof of Theorem 2 we show that O(d2) simple rounds are
sufficient to inform almost all vertices. The analysis is divided into two parts.
In the first part we prove that within O(d2) rounds at least 2d/3 vertices are
informed. In the second part we show that another O(d2) rounds are sufficient
to finish the algorithm. Furthermore, we need the following lemma 5 for our
analysis.

Lemma 4 Let x ≥ 2. It holds that lg x+1
x
≥ 1

x
.

Proof: The statement is equivalent to:

∀x ≥ 2 :
1

x
≥ 2

1
x − 1

Substituting y := 1
x
:

∀y ∈ (0, 1/2〉 : y ≥ 2y − 1

For y = 0 the equality holds. Hence it is sufficient to prove that the derivative
of the left side is larger than the derivative of the right side for y ∈ (0, 1/2〉,
i.e. 1 ≥ 2y ln 2, which obviously holds. 2

Lemma 5 After performing O(d2) simple rounds on Qd at least 2d/3 vertices
are informed.

Proof: Let l := 2d−k be the number of informed vertices and b be the number
of passive arcs at the beginning of some simple round. Obviously b ≤ ld. Since
we can assume that l < 2d/3, the conditions of Lemma 3 are met, and at least
β∂(k) acknowledgements are delivered in one simple round, where β := (1 −
α)2. Furthermore, the edge boundary of informed vertices is also the boundary
of uninformed vertices, so the number of delivered acknowledgements is at
least β∂(l). Because every delivered acknowledgement adds one passive arc,
the number of passive arcs grows at least to b′ = b+ β∂(l) after this round.

As in Lemma 3, let us consider a function f(x) := x(d− lg x), for x ∈
〈
0, 2d

〉
.

Since f ′(x) = d − 1/ ln 2 − lg x, f(x) is increasing for x ∈
〈
0, 2d/e

〉
and

decreasing for x ∈
〈
2d/e, 2d

〉
.

As b/d ≤ l ≤ 2d/3 ≤ 2d/e it holds that ∂(b/d) ≤ ∂(l). Hence we have the
following lower bound on b′:

b′ ≥ b+ β∂

(
b

d

)
≥ b+ β

b

d

(
d− lg

b

d

)
≥ b

(
1 + β

d− lg b
d

d

)

5 Which is in fact a consequence of a known inequality ln(x+ 1) ≥ x
x+1
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The lower bound on b implies the inequality lg b
d
≤ d+lg(1/3)). Hence it holds

b′ ≥ b

(
1 + β

− lg(1/3)

d

)
= b

1 +
1
d

β lg 3


We have shown that the number of passive arcs grows exponentially with
number of simple rounds performed. As it cannot grow above d2d/3 without
informing at least 2d/3 vertices, we can estimate an upper bound on number
of required simple rounds:

T ≤ lg(d2d/3)

lg
(

1 + 1
d

β lg 3

)
For large enough d, Lemma 4 is applicable, hence proving the Lemma:

T ≤ lg(d2d/3)
d

β lg 3
= O

(
d2
)

2

Lemma 6 Let ε > 1 be an arbitrary constant, and let ki ≤ (2/3)2d be the
number of uninformed vertices and hi the number of hyperactive arcs of Qd

at the beginning of round i. Then after O(d2) simple rounds there are at most
Xε uninformed vertices and at most X(d− 1) hyperactive arcs.

Proof: Similarly to the proof of Theorem 1 let us consider the measure
Mi := 2dki +hi. The requirements of the Lemma ensure that Mi ≤ O(d2d). It
is easy to see that Mi decreases with every acknowledgement delivered: if the
acknowledgement is delivered over a hyperactive arc, the value of hi decreases
by 1. If it is delivered over an active arc, new vertex is informed, hence the
value of ki decreases by 1 and the value of hi increases by at most 2d− 1.

We show that the value of Mi decreases by a certain multiplicative factor
in every simple round as long as the requirements of Lemma 3 hold. In one
simple round at least β(hi + ∂(ki)) acknowledgements are delivered, where
β := (1− α)2. Hence, the value Mi decreases to at most:

Mi+1≤ 2dki + hi − β(hi + ∂(ki)) ≤ hi(1− β) + 2dki − βki(d− lg ki) =

= hi(1− β) + 2dki

(
1− β + β

lg ki
d

)

Using the inequality lg ki ≤ d+ lg(2/3) yields:

Mi+1 ≤ hi(1− β) + 2dki

(
1 +

β lg(2/3)

d

)

14



Hence for large enough d it holds:

Mi+1 ≤ (hi + 2dki)

(
1 +

β lg(2/3)

d

)

Since the requirements of the Lemma ensures that Mi ≤ (7/3)d2d, the require-
ments of Lemma 3 can hold for at most

T :=
lg
(

7
3
d2d

)
lg
(

1 + 1
d

β lg(2/3)

)
time steps. According to Lemma 4 for large d it holds that

T ≤ lg
(

7

3
d2d

)
d

β lg(2/3)
= O

(
d2
)

which concludes the proof. 2

Combining Lemma 2 with Lemma 5 and Lemma 6 completes the proof of
Theorem 2.

5 Complete Broadcast in Complete Graphs

In Section 3 we have shown how to inform all but some constant number of
vertices in a complete graph Kn in time O(log n). A natural question is to
ask if it is possible to also inform the remaining vertices in the same time
complexity. In this section we partially answer this question. In particular, we
show in the following subsection that if the graph is equipped with a chordal
sense of direction, then the complete broadcasting can be performed in time
O(log n). In the subsequent subsection, we show that if the constant α < 0.55,
complete broadcast can be performed in time O(log n) without the sense of
direction, too.

5.1 Chordal Sense of Direction

Let us consider a complete graph with a fixed Hamiltonian cycle C (unknown to
the vertices). We say that the complete graph has a chordal sense of direction
if in every vertex the incident arcs are labeled by the clockwise distance on C
(see Figure 1). The notion of a sense of direction has been defined formally for
general graphs, and it has been known to significantly reduce the complexity
of many distributed tasks (e.g. [17, 18]).
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Fig. 1. K5 with the chordal sense of direction.

We show how to perform a complete broadcast on a complete graph with the
sense of direction in time O(log n). The process consists of three steps. First,
using Theorem 1, all but a constant number of vertices are informed. In the
second phase the information is delivered to all but one vertex. In the last
phase the remaining single vertex is informed.

The sense of direction is essential to our algorithm. Since there is a unique
initiator of the broadcasting, all vertices can derive unique identifiers defined
as their distance on C from the initiator. Furthermore, the sense of direction
allows each vertex to know the identifier of a destination vertex of any of its
incident arcs.

Lemma 7 It is possible to inform all vertices but one on complete graphs with
chordal sense of direction in time O(log n). Furthermore, after finishing the
algorithm vertex 0 or vertex 1 knows a constant number of candidates for the
uninformed vertex.

Proof: The outline of the algorithm is as follows: at first the algorithm from
Theorem 1 is performed, which ensures that all but a constant number of
vertices are informed. Afterwards a significant group of vertices negotiates a
common set U of candidates for uninformed vertices, such that all uninformed
vertices are in U and the size of U is constant. The vertices then cooperate to
inform all vertices in U but one. As a side effect, the set U will be known to
vertex 0 or vertex 1, hence satisfying the second claim of the lemma. Now we
present this algorithm in more detail:

Phase 1 Run the algorithm from Theorem 1. This phase takes O(log n) time
and ensures that there are at most Xε uninformed vertices and at most
X(n− 2) hyperactive arcs.

Phase 2 Each vertex v that has at most 3X(1 + ε) non-passive (i.e. active
or hyperactive) links leading to the set of vertices Uv sends a message con-
taining Uv to vertices with number 0 and 1.

Now we show that at least one of these messages is delivered. It is easy
to see that there are at least 2n/3 vertices satisfying the above-mentioned
condition, otherwise there would be more than n/3 vertices with at least
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3X(1 + ε) non-passive links, so there would be more than nX(1 + ε) active
or hyperactive arcs. But since the number of uninformed vertices is at most
k ≤ Xε ≤ n/2 for large n, there are k(n − k) ≤ Xε(n − Xε) active arcs.
So the total number of active or hyperactive arcs is at most Xε(n−Xε) +
X(n− 2) ≤ Xn(1 + ε), which is a contradiction.

The rest of the algorithm will be time-multiplexed into two parts. In
even time steps, the case that the vertex 0 received a message in phase 2 is
processed. In odd time steps, the case that the vertex 1 received a message
is processed analogously. Hence, we can restrict to the first case in the rest
of the algorithm description. As there are only two cases the asymptotic
complexity of the algorithm is unaffected by the multiplexing.

Phase 3 The vertex 0 received at least one message containing a set of pos-
sibly uninformed vertices. It is obvious that the set of uninformed vertices
is a subset of every received message. Hence the set U can be defined as
the intersection of the received messages: Indeed, every uninformed vertex
is in U and the size of U is at most 3X(1 + ε) = O(1). The set U is then
distributed using the algorithm in Theorem 1 among at least n−Xε vertices
in time O(log n).

Phase 4 There are at least n−Xε vertices aware of the set U . In this phase
they cooperate to inform all but one vertex in U , using an idea similar to
Lemma 2 in [12]: every vertex aware of the set U iterates through all pairs
[i, j] (i, j ∈ U) in lexicographical order; in each time step it sends the original
message to both vertices i and j. Since in each time step at least 2n−Xε
messages are sent, at least one of them is delivered (for large enough n). As
all vertices process the same pair [i, j] in every time step, this ensures that
a new vertex is informed whenever both i and j were uninformed. Hence, at
the end of this phase all vertices but one are informed. The time complexity
of this phase is O(|U |2) = O(1).

It is obvious that after finishing the Phase 4 the claim of the Lemma holds.
2

Finally, we show how to inform the last remaining vertex, thus proving the
following theorem:

Theorem 3 It is possible to perform broadcasting on complete graphs with
chordal sense of direction in time O(log n).

Proof: We present an algorithm for solving the broadcasting problem:

Phase 1 The algorithm from Lemma 7 is used. This takes O(log n) time, all
vertices but one are informed and the vertex 0 or the vertex 1 knows a set
U of constant size containing candidates for the uninformed vertex.

The rest of the algorithm is multiplexed into two parts, treating these
two cases separately. In the remaining of the description we assume that
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the vertex 0 knows the set U .
Phase 2 The algorithm from Lemma 7 is used to broadcast the set U , to-

gether with the original information, to all vertices but one. This takes
O(log n) time again.

After the Phase 2 is finished, two cases are possible: either the uninformed
vertex of the Phase 2 is different from or is the same as the uninformed
vertex of the Phase 1. In the former case all vertices are informed. The rest
of the algorithm handles the latter case.

Phase 3 If not all vertices are informed, then there is a single uninformed
vertex v. Furthermore, every informed vertex knows the set U of constant
size such that v ∈ U . Every informed vertex iterates through the set of U ;
in i-th time step of the current phase it sends the message to i-th mem-
ber of U . Eventually, the uninformed vertex is processed. Since all n − 1
informed vertices are doing the same, exactly n−1 messages are sent to the
uninformed vertex, hence finishing the broadcast.

The time complexity of the Phase 1 and Phase 2 is O(log n); the time com-
plexity of the Phase 3 is O(|U |) = O(1). Hence the algorithm correctly solves
the broadcasting on complete graphs in time O(log n). 2

5.2 Without Sense of Direction

As a last result in this paper we show that it is possible to perform broadcasting
on complete graphs in time O(log n) for small values of α (i.e. α . 0.55) even
without the sense of direction. The idea is to use the algorithm from Theorem
1 to inform all but constantly many vertices. Next, instead of repeating 2-step
simple rounds, some log n-step extended rounds are repeated, such that each
extended round informs a yet uninformed vertex. During an extended round
messages are sent for O(log n) steps in such a way that in every step the
number of hyperactive arcs is decreased by some factor 6 unless a new vertex
is informed.

Theorem 4 Let α . 0.55. Then it is possible to perform broadcasting on
complete graphs without sense of direction in time O(log n).

Proof: The algorithm is described as Algorithm 1.

At first, the algorithm from Theorem 1 is performed, ensuring that there are
at most k ≤ Xε uninformed vertices and at most h ≤ X(n − 2) hyperactive
arcs (X and ε have the same meaning as in Theorem 1). The purpose of one
iteration of the loop on lines 3–14 is to inform at least one uninformed vertex.
Taking L1 := Xε = O(1) ensures that all vertices will be informed.

6 In this part we need the assumption that α is small enough
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Algorithm 1 Complete graphs without sense of direction.

1: perform almost-complete broadcast according to Theorem 1
2: let k denote the number of uninformed vertices, let h denote the number

of hyperactive arcs
3: loop L1 times // Perform L1 extended rounds
4: loop L2(n) times // In each iteration h decreases by a constant

factor
5: E := set of all currently active or hyperactive arcs; P := ∅
6: loop L3 times
7: send the message via all arcs in E ∪ P

8: P := P ∪

e | a message has been delivered in this step

via the opposite arc of e


9: end loop

10: end loop
11: loop L4(n) times // Inform new vertex and decrease a
12: perform one simple round
13: end loop
14: end loop

The values of L1, L2(n), L3 and L4(n) are specified in the analysis of the
algorithm, such that L1, L3 = O(1) and L2(n), L4(n) = O(log n).

The loop on lines 4–10 reduces the number of hyperactive arcs to zero unless
a new vertex is informed. One iteration of this loop either informs a new
vertex or reduces the number of hyperactive arcs from h to (1−Y/2)h, where
0 < Y < 1 is a constant (depending on α) defined later. Hence the number
of hyperactive arcs decreases exponentially with number of iterations of the
loop and log1/(1−Y/2) h iterations are sufficient to eliminate all hyperactive arcs.
Since the condition h ≤ X(n − 2) holds before every execution of the loop
(this is provided either directly by Theorem 1 or by the loop on lines 11–13),
we can define L2 := log1/(1−Y/2)(X(n− 2)) = O(log n).

Now we describe one iteration of the loop on lines 4–10. We distinguish two
types of arcs that are hyperactive at the beginning of the considered iteration:
an arc e is a single hyperactive arc if and only it is hyperactive and the opposite
arc of e is passive at the beginning of the iteration. Otherwise (i.e. if both e
and the opposite arc of e are hyperactive at the beginning of the iteration), e
is a double hyperactive arc.

Let E be the set of all active or hyperactive arcs at the beginning of the
iteration, and P be the set of all arcs opposite to arcs through which some
message has been delivered in the current iteration. Furthermore, let k′ be the
number of uninformed vertices at the beginning of the current iteration, h′

be the number of hyperactive arcs at the beginning of the current iteration
and p = |P \ E| be number of arcs in P that were passive at the beginning
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of the current iteration. It clearly holds that |E| = k′(n − k′) + h′ and that
k′(n − k′) + h′ + p messages are sent on every execution of line 7. Since at
least n − 1 messages are lost (because we may assume that no new vertex
is informed), at most α(k′(n − k′) + h′ + p) of them are lost, i.e. at least
(1− α)(k′(n− k′) + h′ + p) are delivered.

Now assume by contradiction that the number of hyperactive arcs does not
decrease below (1−Y/2)h′, and no new vertices are informed during the current
iteration of the loop on lines 4–10. Consider any message delivered over an arc
e which is a double hyperactive arc or an arc in P \E; it is easy to see that the
opposite arc of e is passive after the delivery and that it was hyperactive at
the beginning of the iteration. This fact yields that at most (Y/2)h′ messages
are delivered over a double hyperactive arc or an arc in P \E on any execution
of line 7.

Now we show a lower bound on the number of messages that pass over double
hyperactive arcs or arcs in P \E or single hyperactive arcs whose opposite arcs
are not in P \E. Intuitively, every such message ensures some progress of the
algorithm, since either an arc is made passive (in the first two cases) or a new
arc is added to P \E (in the third case). As no messages passes over active arcs
by our assumption, and at most p messages pass over single hyperactive arcs
whose opposite arcs are in P \E, there are at least (1−α)(k′(n−k′)+h′+p)−p
messages satisfying one of these three cases. Using the inequalities k′(n−k′) ≥
n−1 and p ≤ h′ yields (1−α)(k′(n−k′)+h′+p)−p ≥ (1−α)(n−2)+(1−2α)h′.
Because h′ ≤ X(n − 2) which is equivalent to (n − 2) ≥ α(1 − α)h′, we have
(1−α)(k′(n−k′)+h′+p)−p ≥ (1−α−2α2+α3)h′. Defining Y := 1−α−2α2+α3,
which is positive and less than one by the assumption of the Lemma, we have
shown that there are at least Y h′ messages satisfying one of the three cases.

However, at most (Y/2)h′ of them satisfies the first two cases, hence there
are at least (Y/2)h′ arcs added to P in every execution of line 8. So taking
L3 := 2/Y + 1 ensures that P contains opposite arcs to all single hyperactive
arcs at the beginning of the last iteration of the loop on lines 6–9. However,
this is a contradiction with the fact that new arcs are added to P at line 8.

We conclude the proof with the analysis of the loop on lines 11–13. In the first
iteration of the loop a new vertex is informed, because there are no hyperactive
arcs left after the loop on lines 4–10 finished (unless the new vertex has already
been informed in that loop). Due to Theorem 1, next O(log n) iterations are
sufficient to ensure that h ≤ X(n − 2), which is an invariant required by the
loop on lines 4–10. Hence putting L4(n) := O(log n) (according to Theorem
1) is sufficient to make the algorithm work correctly in time L1(L2(n)L3 +
L4(n)) = O(log n). 2
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6 Conclusions, Open Problems, and Further Research

We have studied the problem of almost complete broadcast under the model
of fractional dynamic faults with threshold. We showed that both in complete
graphs and in hypercubes, it is possible to inform all but constantly many
vertices in time O(D log n) where D is the diameter of the graph and n is the
number of vertices.

Moreover, we have proved that if the complete graph is equipped with the
chordal sense of direction, or the parameter α < 0.55, a complete broadcast
can be performed in time O(log n).

This research leaves many open questions and directions for further research,
from which we mention at least a few. One obvious question is to ask if it is pos-
sible to perform a complete broadcast in complete graphs also for large values
of α in polylogarithmic time. The difficulty of broadcasting in the fractional
dynamic model with threshold stems from the fact that, in order to inform
the last few vertices, all informed vertices must cooperate very tightly. In gen-
eral, the relationship between the almost complete and complete broadcast in
various models is worth studying. We have also not considered non-constant
values of α. It would be interesting to extend our results to more general
classes of graphs.

We finish by noting that there is a lack of any non-trivial lower bounds in the
model of fractional faults with threshold.
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